期刊文献+

基于压缩感知的放大转发双向中继信道估计 被引量:3

Channel estimation based on compressive sensing in two-way amplify-and-forward relay channel
下载PDF
导出
摘要 为了更有效地对放大转发双向中继信道进行估计,对级联卷积信道的稀疏特性进行了分析,并基于其稀疏性,采用压缩感知技术,通过合理地设计导频将合成级联卷积信道分解成2个独立的级联卷积信道分别进行信道估计。研究分析和仿真结果表明,级联卷积信道具有稀疏性且其稀疏度在一定范围内变化。所提的方案只需在端节点对级联卷积信道进行估计就可以完成双向信息的交换,提高了频谱效率,降低了信道估计误差,并且无需信道稀疏度的先验信息。 The sparsity of concatenated convolutional channel in two-way amplify-and-forward relay was analyzed. Through the appropriate design of the pilot, the synthetic concatenated convolutional channels could be decomposed into two independent concatenated convolutional channels for channel estimation. Theoretical analysis and simulation results show that the concatenated convolutional channel possesses sparsity which varies within a range. The proposed scheme completes the two-way exchange of information by finishing concatenated convolutional channel estimation in end nodes Without the priori information of the channel sparsity, this scheme improves the utilization of spectrum resources and the performance of channel estimation.
出处 《通信学报》 EI CSCD 北大核心 2013年第10期174-182,共9页 Journal on Communications
基金 国家自然科学基金资助项目(61271240 61201270) 江苏省自然科学基金资助项目(BK2010077) 东南大学移动通信国家重点实验室开放课题基金资助项目(2010D02)~~
关键词 信道估计 压缩感知 双向中继 级联卷积信道 放大转发 channel estimation compressive sensing two-way relay concatenated convolutional channel amplify and .forward
  • 相关文献

参考文献3

二级参考文献56

  • 1D Donoho. Compressed sensing[ J]. IEEE Trans Inform Theory,2006,52(4) : 1289 - 1306.
  • 2M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Appfication to compressed sensing and other inverse problems [ J ]. IEEE J Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1(4) :586 - 598.
  • 3I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for finear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57( 11 ):1413 - 1457.
  • 4T Blumensath, M Davies. Iterative hard thresholding for compressed sensing[ J]. Appl Comput Harmon Anal, 2009, 27 ( 3 ) : 265 - 274.
  • 5A C Gilbert, S Guha, P Indyk, S Muthukrishnan, M J Strauss. Near-optimal sparse Fourier representations via sampling[ A]. Proc. of the 2002 ACM Symposium on Theory of Computing STOC[C]. Montreal, Quebec, Canada, 2002. 152 - 161.
  • 6E Candbs, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans Inform Theory ,2006,52(2) :489- 509.
  • 7E Candes, T Tao. Error correction via linear programming [A]. Proc. of 46th Annual IEEE Symposium on Foundations of Computer Science FOCS [ C ] . Pittsburgh, Pennsylvania, USA. 2005.295 - 308.
  • 8S Mallat, Z Zhang. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Singal Processing, 1993,41 (12) : 3397 - 3415.
  • 9E J Candes, T Tao. Decoding by linear programming [ J ]. IEEE Trans Inform Theory,2005,51 (12):4203- 4215.
  • 10S J Kim, K Koh, M Lustig, S Boyd, D Gorinevsky. A interiorpoint method for large-scale ly-regularized least-squares problems with applications in signal processing and statistics[J]. Journal of Machine Learning Research, 2007,7 ( 8 ) : 1519 - 1555.

共引文献136

同被引文献38

  • 1刘东华,梁光明.Turbo码设计与应用[M].北京:电子工业出版社.2011.
  • 2Donho D L. Compressed Sensing [ J ]. IEEE Transactions on Informa-tion Theory, 2006,52(4) :1289 - 1306.
  • 3Candes E,Romberg J, Tao T. Robust uncertainty principles : exact sig-nal reconstruction from highly incomplete frequency information [ J].IEEE Transactions on Information Theory, 2006,52(2) :489 ~509.
  • 4Berrou C, Glavieux A. Near Shannon limit error correct coding and de-coding :Turbo coding and decoding: Tiyrbo codes [ C] . IEEE ICC93 ,1993,10:1064-1070.
  • 5Oscar Y Takeshita. A Note on Asymmetric Turbo-Codes [ J]. IEEEJournal, 1999:69-71.
  • 6Donoho D L,Tsaig Y. Extensions of compressed sensing [ J ]. IEEETransaction on Signal Processing, 2006, 86(3) : 533 -548.
  • 7Gilbert A C, Guha S, Indyk P. Near-optimal sparse Fourier represen-tations via sampling[ C ] //Proceedings of the Annual ACM Symposiumon Theory of Computing. Montreal, Canada, Association for Compu-ting Machinery, 2002 : 152 - 161.
  • 8Arian Maleki,David L. Donoho. Optimally Tuned Iterative Recon-struction Algorithms for Compressed Sensing[ J]. IEEE Journal of Se-lected Topics in Signal Processing, 2010, 4(2) : 330 -341.
  • 9Tropp J A,Gilbert A C. Signal recovery from random measurements viaorthogonal matching pursuit [ J ]. IEEE Transactions on InformationTheory,2007,53(12) :4655 -4666.
  • 10Hanxin Wang. Design for the Asymmetric Turbo Codes [ C ]. IEEEICACT2010: 657 -660.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部