期刊文献+

基于免疫遗传算法的复杂网络社区发现 被引量:2

Community detection in complex networks based on immune genetic algorithm
下载PDF
导出
摘要 针对大部分基于智能优化算法的社区发现方法存在的种群退化、寻优能力不强、计算过程复杂、需要先验知识等问题,提出了一种基于免疫遗传算法(GA)的复杂网络社区发现方法。算法将改进的字符编码和相应的遗传算子相结合,在不需要先验知识的情况下可自动获得最优社区数和社区划分方案;将免疫原理引入遗传算法的选择操作中,保持了群体多样性,改善了遗传算法所固有的退化现象;在初始化种群及交叉和变异算子中利用网络拓扑结构的局部信息,有效缩小了搜索空间,增强了寻优能力。计算机生成网络和真实网络上的仿真实验结果表明算法可自动获取最优社区数和社区划分方案并具有较高的精度,说明算法具有可行性和有效性。 As many of the community detection methods based on intelligent optimization algorithms suffer from degeneracy, unsatisfactory optimization ability, complex computational process, requiring priori knowledge, etc., a community detection method in complex networks based on immune Genetic Algorithm (GA) was proposed. The algorithm combined the improved character encoding with the corresponding genetic operator, and automatically acquired the opt!real community number and the community detection solution without the priori knowledge. Immune principle was introduced into selection operation of GA, which maintained the diversity of individuals, and therefore improved the intrinsic degeneracy of GA. By utilizing the local information of the network topology structure in initialization population, crossover operation and mutation operation, the search space was compressed and the optimization ability was improved. The simulation results on both computer-generated networks and real-world networks show that the algorithm acquires the optimal community number and the community detection solution, and has a higher accuracy. This indicates the algorithm is feasible and valid for community deteetion in complex networks.
出处 《计算机应用》 CSCD 北大核心 2013年第11期3129-3133,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(11161041) 2012年度国家民委科研项目基金资助项目 中央高校基本科研项目基金资助项目(31920130009 zyz2012081)
关键词 社区发现 复杂网络 免疫原理 遗传算法 单向交叉 community detection complex network immune principle Genetic Algorithm (GA) one-way crossing over
  • 相关文献

参考文献15

  • 1罗锦坤,元昌安,杨文,胡卉颖,袁晖.基于基因表达式编程算法的复杂网络社区结构划分[J].计算机应用,2012,32(2):317-321. 被引量:3
  • 2KERNIGHAM B W, LIN S. An efficient heuristic procedure for par- titioning graphs [ J]. Bell System Technical Journal, 1970, 49(2) : 292 - 307.
  • 3POTHEN A, SIMON H, LIU P, et al. Partitioning sparse matrices with eigenvectors of graphs [ J]. SIAM Journal on Matrix Analysis and Applications, 1990, 11 (3) : 430 - 452.
  • 4GIRVAN M, NEWMAN M E J. Community structure in social and biological networks [ J]. Proceedings of the National Academy ofSciences, 2002, 99(12): 7821 -7826.
  • 5NEWMAN M E J. Fast algorithm for detecting community structure in networks [J]. Physical Review E, 2004, 69(6): 066133.
  • 6何东晓,周栩,王佐,周春光,王喆,金弟.复杂网络社区挖掘—基于聚类融合的遗传算法[J].自动化学报,2010,36(8):1160-1170. 被引量:58
  • 7朱大勇,侯晓荣,张新丽.遗传聚类的社团结构发现[J].智能系统学报,2009,4(1):81-84. 被引量:5
  • 8SHANG R H, BAI J, JIAO L C, et al. Community detection based on modularity and an improved genetic algorithm [ J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(5): 1215 - 1231.
  • 9SHI C, YAN Z Y, WANG Y, et al. A genetic algorithm for detec- ting communities in large-scale complex networks [ ]. Advances in Complex Systems, 2010, 13(1) : 3 - 17.
  • 10LIU X, LI D Y, WANG S L, et al. Effective algorithm for detec- ting community structure in complex networks based on GA and clustering [ C]//Proceedings of the 7th International Conference on Computational Science. Berlin: Springer, 2007:657-664.

二级参考文献71

  • 1元昌安,唐常杰,左劼,谢方军,陈安龙,胡建军.基于基因表达式编程的函数挖掘——收敛性分析与残差制导进化算法[J].四川大学学报(工程科学版),2004,36(6):100-105. 被引量:44
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:191
  • 3刘婷,胡宝清.基于聚类分析的复杂网络中的社团探测[J].复杂系统与复杂性科学,2007,4(1):28-35. 被引量:16
  • 4NEWMAN M E J.Fast algorithm for detecting community structure in networks[J].Phys Rev E,2004,69(6):066133.
  • 5GIRVAN M,NEWMAN M E J.Community structure in social and biological networks[J].Proc Natl Acad Sci,2001,99:7821-7826.
  • 6TASGIN M,HERDAGDELEN A,BINGOL H.Community detection in complex networks using genetic algorithms[J/OL].[2008-09-13].http://arxiv.org/abs/0711.0491.
  • 7LIU Xin,LI Deyi,WANG Shuliang,et al.Effective algorithm for detecting community structure in complex networks based on GA and clustering[J].Lecture Notes in Computer Science,2007,4488:657-664.
  • 8ZHOU Haijun.Distance,dissimilarity index and network community structure[J].Phys Rev E,2003,67(6):061901.
  • 9NEWMAN M E J,GIRVAN M.Finding and evaluating community structure in networks[J].Phys Rev E,2004,69(2):026113.
  • 10Frey B J,Dueek D.Clustering by passing messages between data points[J].Science,2007,315:972-976.

共引文献183

同被引文献16

  • 1SUCIC V, LERGA J, VRANKIC M. Adaptive filter support selec- tion for signal denoising based on the improved ICI rule[ J]. Digital Signal Processing, 2013, 23(1) : 65 -74.
  • 2RENINGER P A, MARTELET G, DEPARIS J, et al. Singular val- ue decomposition as a denoising tool for airborne time domain elec- tromagnetic data[ J]. Journal of Applied Geophysics, 201 l, 75(2) : 264 - 276.
  • 3RAJWADE A, RANGARAJAN A, BANERJEE A. Image denoising using the higher order singular value decomposition [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 849 -862.
  • 4SHIH Y T, CHIEN C S, CHUANG C Y. An adaptive parameterized block-based singular value decomposition for image de-noising and compression[ J]. Applied Mathematics and Computation, 2012, 218 (21) : 10370 - 10385.
  • 5QUAN Q, CAI K. Time-domain analysis of the Savitzky-Golay ill- ters[ J]. Digital Signal Processing, 2012, 22(2) : 238 -245.
  • 6tIASSANPOUR H, ZEHTABIAN A, SADATI S J. Time domain signal enhancement based on an optimized singular vector denoising algorithm[ J]. Digital Signal Processing, 2012, 22(5) : 786 - 794.
  • 7KRISHNAN S R, SEKHAR C. On the selection of optimum Savitz- ky-Golay filters [ J]. IEEE Transactions on Signal Processing, 2013, 61(2): 380-391.
  • 8赵学智,叶邦彦,陈统坚.奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J].机械工程学报,2010,46(1):100-108. 被引量:142
  • 9金弟,刘杰,贾正雪,刘大有.基于k最近邻网络的数据聚类算法[J].模式识别与人工智能,2010,23(4):546-551. 被引量:18
  • 10陈志刚,束炯.基于Savitzky-Golay方法的遥感影像融合[J].地理与地理信息科学,2011,27(2):26-29. 被引量:4

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部