期刊文献+

悬浮转子式微陀螺的反电动势转速检测 被引量:2

Back EMF speed detection of suspended rotor micro gyroscope
下载PDF
导出
摘要 根据液浮转子式微陀螺闭环驱动系统对转子转速测量的需求,提出了一种适用于悬浮转子式微陀螺的反电动势转速检测方法。根据楞次定律,永磁转子在附有检测线圈的定子中转动时,会切割磁感线感应出反电动势。对反电动势信号进行分析,即可测得转子的转速。由于检测线圈与驱动线圈共用定子铁芯,这种检测方法在降低定子结构复杂度的同时,也引入了矩形波驱动信号带来的毛刺干扰。干扰信号经过模拟低通滤波器衰减后,通过模数转换器转换为数字信号。该信号通过单片机上运行的过零检测算法处理后,即可得到当前转子的转速。测试结果表明,该转速检测系统在刷新率为4Hz、转速达到5 000r/min以上时,测量值的相对误差在0.3%以内,其非线性误差为0.41%,能够满足对悬浮转子式微陀螺转速进行检测的要求。 On the basis of requirements of the closed-loop driving system in a liquid suspended rotor gyroscope for measurement of rotor speeds,a Back-electromotive Force (EMF) rotating speed detection method is proposed for the suspended rotor gyroscope.As induction coils work on Lenzs law,the rotating speed of rotor can be measured by detecting the back-EMF generated by a permanent magnetism (p-m) rotor.Because the detecting coil and driving coil share the same stator core,this method reduces the complexity of the stator,but also introduces a burr interference from the driving rectangular wave.The interference signal is then attenuated by an analog low-pass filter and sampled by an A/D converter.Finally,the rotating speed of rotor can be calculated automatically by using a Micro-controller Unit (MCU) and the zero crossing detection algorithm.The test results show that the relative error of detected value can be within 0.3%,and the nonlinear error is 0.41% when a refresh frequency is 4 Hz and the rotating speed reaches 5 000 r/min.The performance meets the requirement of rotating speed detection.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第10期2566-2573,共8页 Optics and Precision Engineering
基金 国家重大科学研究计划资助项目(No.2012CB934104) 国家自然科学基金资助项目(No.61071037) 哈尔滨工业大学科研创新基金资助项目(No.HIT.NSRIF.2014040)
关键词 微陀螺 悬浮转子 转速测量 反电动势 嵌入式算法 micro gyroscope suspended rotor rotating speed measurement back Electromative Force (EMF) embedded algorithm
  • 相关文献

参考文献11

二级参考文献124

共引文献60

同被引文献26

  • 1CASTILLO P, LOZANO R, DZUL A. Sta- bilization of a mini rotorcraft with four rotors[J]. IEEE Control Systems Magazine, 2005 : 45-55.
  • 2ZHANG R, QUAN Q, CAI K Y. Attitude control of a quadrotor aircraft subject to a class of time- varying disturbances [ J ]. lET Control Theory Application, 2011, 5(9) : 1140-1146.
  • 3ZUO Z. Trajectory tracking control design with command-filtered compensation for a quadrotor [J]. IET Control Theory Appl. , 2010, 4 (11) ; 2343- 2355.
  • 4ZAIRI S, HAZRY D. Adaptive neural controller implementation in autonomous mini aircraft quadrotor ( AMAC-Q ) for attitude control stabilization [C]. Proceedings of 2011 IEEE 7th International Colloquium on Signal Proceeding and its Applications, Penang, 2011: 84-89.
  • 5GONG X, BAI Y, ZHAO C, et al: Trajectory tacking control of a quad-rotor based on active disturbance rejection control [C]. Proceedings of the IEEE International Conference on Automation and Logistics, Zhengzhou, 2012 : 254-259.
  • 6PENG C, BAI Y, GONG X, at al: ADRC trajectory tracking control based on PSO algorithm for a quad-rotor [C]. Proceedings of the 8th IEEE Conference on Industrial Electronics and Applications, Melbourne, 2013: 800-805.
  • 7LEI Y , BAI Y, XU ZH J. An experimental investigation on aerodynamic performance of a coaxial rotor system with different rotor spacing and wind speed [J]. Experimental Thermal and Fluid Science, 2013:779-785.
  • 8LEE B, BYUN Y, KIM J, et al: Experimental hover performance evaluation on a small-scale rotor using a rotor test stand [J]. Journal of Mechanical Science and Technology, 2011, 25 (6) : 1449-1456.
  • 9YOUNG K D, UTKIN V I, OZGUNER U. A. Control engineer's guide to sliding mode control [J]. IEEE Transactions on Control Systems Technology, 1999,7 (3) : 328- 342.
  • 10LEVANT A. Sliding order and sliding accuracy in sliding mode control [J]. International Journal of Control, 1993, 58(6): 1247-1263.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部