期刊文献+

基于主成分分析的直线运动模糊参数估计 被引量:19

Parameter estimation of linear motion blur based on principal component analysis
下载PDF
导出
摘要 为了快速准确地估计直线运动模糊图像中的模糊参数,分析了直线运动模糊参数的长度和方向在频率域图像和倒谱图像中的表现形式,提出了一种基于主成分分析的运动模糊参数估计方法。首先,基于高斯建模对模糊图像中的倒谱图像进行二值化分割,得到倒谱图像中的亮线区域。然后,基于主成分分析提取亮线区域的主成分分量,主成分分量的方向即为模糊角度;依据估计的模糊角度,计算模糊图像傅里叶频率域图像相应角度的Radon变换,进行滤波去"毛刺"处理。最后,通过计算极小值之间的间距,估计模糊长度。实验结果表明:估计的模糊角度和模糊长度平均误差分别为0.138 4°和0.273 9pixel,在同精度条件下,速度是传统的Radon变换方法的10倍左右,表明该方法能快速、准确地估计直线运动模糊参数。 To estimate the blur parameter of a linear motion blur image accurately and quickly,this paper analyses how the blur length and direction show in a frequency image and a cepstrum image,respectively,and proposes a motion blur parameter estimation method based on the Principal Component analysis (PCA).Firstly,the cepstrum image of the blur image was segmented in a binaryzation based on the Gaussian distribution modeling,and the highlight line region in the cepstrum image was obtained.Then,the principal component of the highlight line was extracted based on the PCA,and the direction of the principal component was the blur direction.After the blur direction was estimated,the Radon transform of frequency image for the blur image under the estimated direction was calculated,then the result of Radon transform was smoothed to reduce some artifacts.Finally,the blur length was estimated via calculating the interval between the two local-minimas of the Radon transform.Experiment results indicate that the errors of the estimated blur direction and length are 0.138 4°and 0.273 9 pixel,respectively,and the calculation speed is nearly 10 times faster than that of the traditional estimated method based on Radon method with the same accuracy.It concludes that the proposed method can estimate the blur parameter accurately and rapidly.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第10期2656-2663,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61231016 No.61272288) 西北工业大学基础研究基金资助项目(NoJC201120 No.JC201148) 西北工业大学翱翔之星计划资助项目(No.12GH0311)
关键词 直线运动模糊 模糊参数估计 主成分分析 RADON变换 linear motion blur blur parameter estimation principal component analysis Radon transform
  • 相关文献

参考文献12

  • 1HARMELING S, HIRSCH M, SCHOLKOPF B. Space-variant single-image blind deconvlution of re- moving camera shake [C]. Proceedings of Ad- vance,s in Neural Information Processing Systems 23, 2010:829-837.
  • 2BABACAN S D, MOLINA R, DO M N, et al: Bayesian blind deconvolution with general sparse image priors [C]. Proceedings of the 12th Europe- an Conference on Computer Vision, Florence, Ita- ly, 2012:341-355.
  • 3KRISHNAN D, TAY T, FERGUS R. Blind deconvo- lution using a normalized sparsity measure [C]. Pro- ceedings of the 12th European Conference on Comput- er Vision, Colorado, USA, 2011: 233-240.
  • 4石明珠,许廷发,张坤.运动成像混合模糊的全变分图像复原[J].光学精密工程,2011,19(8):1973-1981. 被引量:26
  • 5范赐恩,陈曦,张立国,张虎,邓德祥.双CMOS成像系统中运动模糊图像的复原[J].光学精密工程,2012,20(6):1389-1397. 被引量:4
  • 6冯亮,王平,许廷发,石明珠,赵峰.运动模糊退化图像的双字典稀疏复原[J].光学精密工程,2011,19(8):1982-1989. 被引量:8
  • 7MICHAL D, LIBOR M, TOMAS F. Blurred image restoration : A fast method of finding the motion length and angle [J]. Digital Signal Processing, 2010,10: 1677-1686.
  • 8WU Z Y, HUANG X H, LI X D, et al: A simul- taneous localization and mapping method based on fast-Hough transform [J]. Information Technolo- gy Journal, 2008, 7(1) : 190-194.
  • 9FANG X Y, WU H, WU Z B, et al: An im proved method for robust blur estimation [J]. In formation Technology Journal, 2011, 10 ( 9 ):1709-1716.
  • 10孙辉.相位相关技术实现离焦模糊图像运动估计[J].液晶与显示,2012,27(2):223-228. 被引量:6

二级参考文献46

  • 1段彩艳,李一民,潘晓露,魏志强.基于频谱分析的退化图像模糊类型识别[J].云南大学学报(自然科学版),2009,31(S2):9-11. 被引量:2
  • 2贾平,张葆,孙辉.航空成像像移模糊恢复技术[J].光学精密工程,2006,14(4):697-703. 被引量:38
  • 3HAMAMOTO T, AIZAWA K. A computational image sensor with adaptive pixel based integration time[J]. IEEE Journal of Solid-State Circuits, 2001, 36(4):580-585.
  • 4BEN-EZRA M,NAYAR S K. Motion based motion deblurring[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2004, 26 (6) : 689.
  • 5CALVETTI D, LEWIS B, REICHEL L. Restora tion of images with spatially variant blur by the GMRES method[J]. SPIE, 2000, 4116:364-374.
  • 6YUAN L,SUN J,QUAN L, et al.. Image deblur- ring with blurred/noisy image pairs[C]. Proceed- ings of ACM SIC-GRAPH,2007,26(3) :1-10.
  • 7OLSHAUSEN B A. Emergence of simple-cell re- ceptive field properties by learning a sparse code for naturalimages[J]. Nature, 1996,381 (6583):607- 609.
  • 8OLSHAUSEN B A,FIELD D J. Sparse coding with an overcomplete basis set: A strategy employed by V1[J]. Vision research, 1997, 37(23) :3311-3325.
  • 9MA J,LE DIMET F X. Deblurring from highly in- complete measurements for remote sensing[J]. Ge- oscience and Remote Sensing, IEEE Transactions on ,2009, 47(3) :792-802.
  • 10ELAD M, FIGUEIREDO M A T,MA Y. On the role of sparse and redundant representations in im- age processing[J]. IEEE, 2010,98(6) :972-982.

共引文献37

同被引文献140

引证文献19

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部