期刊文献+

一种基于稀疏表示的图像去噪算法 被引量:1

An image denoising algorithm based on sparse representation
下载PDF
导出
摘要 利用稀疏表示的自适应特征,将稀疏表示的多分辨理论应用于图像的去噪处理中,提出了一种基于稀疏表示的图像分块去噪方法。首先将噪声图像分割成一定尺寸的图像块,选出同质块与非同质块;然后利用小波去噪方法处理同质块,而采用脊波去噪方法处理非同质块,从而得到去噪后的图像;最后采用维纳滤波器对去噪后的图像进一步处理。实验结果表明,该方法与单纯的小波去噪方法和脊波去噪方法相比,信噪比有了较高的改善,较好地去除图像噪声,并且很好地保存图像的边缘纹理信息。 Adaptive features of the sparse representation , the sparse representation theory is applied to multiresolution image denoising proposed method based sparse representation of the image block .First, the noise image is divided into image blocks of a certain size , selected homogenous block and a non-ho-mogenous block;then wavelet denoising processing homogenous block , while the use ridgelet denoising method to deal with non-homogenous block , thereby obtaining image after go noise .Finally using Wiener filter further process denoising image .Experimental results show that this method compared with pure wavelet denoising and ridgelet denoising method , signal-to-noise ratio has been improved high , remove the image noise , and to save the edge of the image texture information .
出处 《工业仪表与自动化装置》 2013年第5期13-16,共4页 Industrial Instrumentation & Automation
基金 黑龙江省教育厅科学技术研究项目资助(12533054)
关键词 图像去噪 稀疏表示 小波变换 脊波变换 image denoising sparse representation wavelet transform ridgelet transform
  • 相关文献

参考文献12

  • 1Chang SG, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[ J ]. IEEE Transactions on Image Processing,2000,9(9) : 1532 - 1546.
  • 2D L Donoho. De - noising by Soft - threshold [ J ]. IEEE Trans on IT,1995, (41):613 -626.
  • 3E J Candes. Ridgelets:a key to higher dimensional inter- mittency[J]. Philosophical Transactions of the Royal So- ciety of London, 1999, A357 ( 1760 ) : 2459 - 2509.
  • 4Kelley B T, Madisetti V K. The fast discrete radon trans- form- I Theory [ J ]. IEEE Transactions on Image Pro- cessing, 1993,2( 3 ) :382 -400.
  • 5J L Starck, E J Candes,D L Donoho. The curvelet trans- form for image denoising[ J ]. IEEE Transactions on Im- age Processing, 2002,1 ! (6) :670 - 684.
  • 6Do MN, Vetterli M. The finite ridgelet transform for image representation[ J]. IEEE Transactions on Image Process- ing, 2003,12(1) :16 -28.
  • 7Y D L Donoho, I M Johnstone. Adapting to Unknown Smoothness Via Wavelet Shrinkage [ J ]. Journal of Ameri- can StatAssoc, 1995, (12) : 1200 - 1224.
  • 8谭兮,凌玉华,谭山.脊波框架的构造及其在图像去噪中的应用[J].电子技术应用,2007,33(7):58-60. 被引量:3
  • 9Wang X. Wrap - around effect removal finite ridgelet transform for muhiscale image denoising [ J ]. Pattern Recognition, 2010,43 ( 11 ) : 3693 - 3698.
  • 10王宏志,刘媛媛,孙琦.基于小波变换矩阵的改进脊波变换图像去噪[J].吉林大学学报(理学版),2010,48(1):99-103. 被引量:6

二级参考文献35

  • 1郭旭静,侯正信.基于小波基向量的改进FRIT去噪方法[J].电子测量与仪器学报,2005,19(6):49-54. 被引量:5
  • 2侯正信,杨爱萍.对称延拓小波变换矩阵用于FRIT去噪[J].光电子.激光,2007,18(5):603-607. 被引量:5
  • 3DONOHO D L,VETTERI M, DEVORE R A, et al. Data compression and harmonic analysis [J]. IEEE Trans Info Theory,t998, 44(6) : 2 435-2 476.
  • 4CANDES E J. Ridgelets : Theory and Applications [ D ]. Stanford: Department of Statistics Stanford University, 1998.
  • 5CANDES E J, DONOHO D L. Ridgelets:A key to higher-dimension intermittency? [ J]. Phil Trans R Soc Lond A, 1999:2 495-2 509.
  • 6DONOHO D L. Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in R[ J ]. Applied Mathematics Proc Nat! Acad Sci USA,1999,96:1 828-1 833.
  • 7DONOHO D L, VETTERLI M, DEVORE R A, et al. Data compression and harmonic analysis [ J ]. IEEE Trans Info Theory,1998, 44(6) : 2 435-2 476.
  • 8CANDES E J. Ridgelets and the Representation of Mutilated Sobolev Functions [M]. Nashville: Vanderbilt University Press, 1999.
  • 9DONOHO D L. Orthonormal Ridgelets and Linear Singularities [ J ]. SIAM J Math Anal, 2000,31 ( 5 ) : 1062- 1099.
  • 10Mallat S G. A Wavelet Tour of Signal Processing [ M]. 2nd ed. Beijing: China Machine Press, 2003: 255-286.

共引文献9

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部