期刊文献+

一个酿酒酵母呼吸突变株在高糖胁迫下的生理特性研究 被引量:3

The Physiological Characters of a Saccharomyces cerevisiae Respiratory Mutant under High Sugar Stress
下载PDF
导出
摘要 MF11a为甘蔗糖蜜乙醇发酵野生型高产菌株MF1002的呼吸突变体,对糖分的利用能力显著高于MF1002。本文研究了这两菌株应激高糖胁迫的生理特性变化。结果表明,高糖培养条件下,MF11a菌株的生长和乙醇发酵受抑制的程度均明显低于MF1002,培养基的葡萄糖浓度为30%和40%时,其最大菌体密度、最高出芽率和乙醇浓度等已显著高于MF1002,表明MF11a较MF1002具有更强的高糖耐受能力。在30%葡萄糖的胁迫培养条件下,两菌株胞内的总超氧化物歧化酶(SOD)活力、过氧化氢酶活力、过氧化物酶活力,及它们细胞质和线粒体的ATP酶活力均显著上升,说明这五种酶均参与了两菌株的高糖胁迫反应。其中,MF11a的胞内过氧化氢酶活性、过氧化物酶活力、细胞质ATP酶活力在高糖胁迫下的上升幅度显著高于MF1002,表明这三种酶活力可能与MF11a菌株的高糖耐受能力有关,可作为该菌株进一步改造的指导指标。 The wild type Saccharomyces cerevisiae strain MF1002 that was a high yield strain of molasses ethanol fermentation, and its respiratory mutant MF1 la of which the sugar utilizing capacity was significantly enhanced, were employed to investigate the physiologic response to the high sugar stress. When cultivated in the medium con- taining high concentration glucose, the growth and ethanol fermentation of MF1002 were repressed significantly stronger than MF1 la by high sugar stress. With the glucose concentration in medium was increased to 30% and 40%, the maximum cell number, the maximum cell budding ratio and the ethanol fermentation concentration of MF1 la were all significantly higher than that of MF1002, indicating that MF1 la was stronger tolerance than MF1002 to high sugar stress. The enzymes activity assay exhibited that five enzyme activities of both strains, e.g. the superoxide dismutase (SOD) activity in cell extract, the catalase activity in cell extract, the peroxidase activity in cell extract, the ATPase activity in cytoplasm and the ATPase activity in mitochondria, were all significantly increased atter the strains were cultivated in the medium containing 30% glucose for 24 h for high sugar stress, indicating these enzymes were involved in the response of both strains to high sugar stress. Of which, the increment of the catalase activity in cell extract, the peroxidase activity in cell extract and the ATPase activity in cytoplasm for MF11a was significant higher than for MF1002, implying that these three enzyme activities may be correlation with the high sugar tolerance of MF 11a, and could be used as the indicator for further improvement of the strain.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2013年第5期600-607,共8页 Genomics and Applied Biology
基金 国家973项目(2010CB736209) 国家863项目(2012AA022106和2013AA050701) 国家国际合作项目(201-0DFB63590和2011DFA61910) 广西科学研究与技术开发计划项目(桂科合10100019-21 桂科攻1099071 桂科合1140010-15和桂科重1348004-3) 广西自然科学基金项目(2012GXNSFAA053062和2011GXNSFA018113) 广西科学院基本科研业务费资助项目(12YJ25SW03) 广西八桂学者建设工程专项经费共同资助
关键词 酿酒酵母 呼吸突变体 高糖胁迫 生理特性 Saccharomyces cerevisiae, Respiratory mutant, Sugar stress, Physiological characters
  • 相关文献

参考文献27

  • 1Beales N., 2004, Adaptation of microorganisms to cold tempera- tures, weak acid preservatives, low pH, and osmotic stress: A review, Comprehensive Reviews in Food Science and Food Safety, 3(1): 1-20.
  • 2Betite V.C., Jt-nior M.M., Oliveira J.E., and Emandes J.R., 2012, Very high gravity sucrose fermentation by Brazilian industrial yeast strains: Effect of nitrogen supplementation, Journal of the Institute of Brewing, 118(2): 174-178.
  • 3Casey G.P., Magnus C.A., and Ingledew W.M., 1983, High gravity brewing:. Nutrient enhanced production of high concentration of ethanol by brewing yeast, Biotechnology Letters, 5 (6): 429-434.
  • 4Coote P.J., Jones M.V., Seymour I.J., Rowe D.L., Ferdinando D.P., McArthur A.J., and Cole M.B., 1994, Activity of the plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae, Microbiology, 140(8): 1881-1890.
  • 5Costa V., Reis E., Quintanilha A., and Moradas-Ferreira P., 1993, Acquisition of ethanol tolerance in Saccharomyces cerevisiae: The key role of the mitochondrial superoxide dismutase, Archives of Biochemistry and Biophysics, 300(2): 608-614.
  • 6Costa V., Amorim M.A., Reis E., Quintanilha A., and Moradas-Ferreira P., 1997, Mitochondrial superoxide dis- rnutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase, Microbiology, 143 (5): 1649-1656.
  • 7Davidson J.F., Whyte B., Bissinger P.H., and Schiestl R.H., 1996, Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 93 (10): 5116-5121.
  • 8杜春迎,赵辉,赵志昌,杨朝辉.发酵工业中酿酒酵母耐性机制的研究进展[J].食品工业科技,2012,33(13):378-382. 被引量:12
  • 9Dunford H.B., and Stillman J.S., 1976, On the function and mecha- nism ofperoxidases, Coordination Chemistry Reviews, 19(2): 187 -251.
  • 10何静辉,杨静,王丽,李日辉,穆春,贾晓琳,王林嵩.转萝卜过氧化物酶基因Rsprx1提高毕赤酵母抗盐性[J].中国生物化学与分子生物学报,2011,27(12):1149-1155. 被引量:5

二级参考文献95

  • 1白逢彦,王启明,陆惠中,吴作为,贾建华.酵母菌种内和种间rDNA序列保守性和变异性分析[J].新疆大学学报(自然科学版),2004,21(z1). 被引量:2
  • 2侯保朝,杜风光,郭永豪,贾新成,刘代武.高浓度酒精发酵[J].酿酒科技,2005(4):93-96. 被引量:43
  • 3吕程,郑玉才,王永,梁梓,胡瑜,陶永平,苏永杰,周静,金素钰.藏绵羊乳中酶活力的研究[J].四川畜牧兽医,2005,32(7):28-28. 被引量:2
  • 4卢蓉蓉,许时婴,王璋.乳过氧化物酶的分离纯化和酶学性质研究[J].食品科学,2006,27(2):100-104. 被引量:18
  • 5熊子书.甘蔗糖蜜酒精酵母菌的筛选与应用[J].酿酒科技,1996(1):11-13. 被引量:5
  • 6National Renewable Energy Laboratory (NREL).Measurement of cellulose activities[M] // Laboratory analytical procedure,Lap-006 NREL,Golden Co,1996.
  • 7White T J,Bruns T,Lee S,et al.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M] //Innis M A,Gelfand D H,Sninsky J J,et al.PCR Protocols,a Guide to Methods and Applications.San Diego,CA:Academic Press,1990:315-322.
  • 8National Renewable Energy Laboratory (NREL).Measurement of cellulose activities[M] // Laboratory analytical procedure,Lap-006,NREL Golden Co,1996.
  • 9Nisiotou A A,Gibson G R.Isolation of culturable yeasts from market wines and evaluation of the 5.8S-ITS rDNA sequence analysis for identification purposes[J].Letters in Applied Microbiology,2005,41:454-463.
  • 10Granchi L,Bosco M,Messini A,et al.Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region[J].Journal of Applied Microbiology,1999,87:949-956.

共引文献191

同被引文献48

  • 1田景芝,缪晓青,吴珍红.荔枝蜜中酿酒酵母菌株的筛选研究[J].海峡科学,2010(10):226-227. 被引量:1
  • 2赵红梅,刘景武,张伟.耐高渗酵母的分离、筛选及鉴定[J].食品研究与开发,2006,27(6):34-37. 被引量:11
  • 3王敏,朱会霞,孙金旭,檀建新,张伟,路玲玲.高温酵母的分离及其特性研究[J].中国酿造,2006,25(11):38-41. 被引量:22
  • 4薛军侠,徐艳文,杨莹,刘延琳.野生酿酒酵母耐受性分析[J].酿酒科技,2007(6):45-47. 被引量:19
  • 5TIKKA C, OSURU H P, ATLURI N, et al. Isolation and characterization of ethanol tolerant yeast strains[J]. Bioinformation, 2013, 9(8): 421-425.
  • 6MARAGATHAM C, PANNEERSELVAM A. Isolation, identification and characterization of wine yeast from rotten papaya fruits for wine produc- tion[J]. Adv Appl Sei Res, 2011, 2(2): 93-98.
  • 7XU X L, FENG G L, LIU H W, et al. Isolation, identification and con- trol of osmophilic spoilage yeasts in sweetened condensed milk[J]. Aft J Mierobiol Res, 2014, 8(10): 1032-1039.
  • 8DESAI M V, DUBEY K V, VAK1L B V, et al. Isolation, identification and screening of the yeast flora from Indian cashew apple for sugar and ethanol tolerance[J]. Int J Bioteehnoi Wellness Ind, 2012, 1 (4): 259- 265.
  • 9GASMALLA M A, YANG R J, NIKOO M, et al. Production of ethanol from sudanese sugar cane molasses and evaluation of its quality[J]. J Food Proe Teehnol, 2012, 3(7): 1-3.
  • 10ALVES A C, PACHECO A, ALMEIDA M J, et al. Sugar utilization patterns and respiro-fermentative metabolism in the baker' s yeast Toru- laspora delbrueckii[J]. Microbiology, 2007, 153: 898-904.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部