摘要
We image optical near-field patterns at subwavelength circular hole arrays in Au film by using scanning near-field optical microscopy in near-infrared wavelengths. Periodical oscillation features are found in the near-field images at the air/Au interface and exhibit two typical kinds of standing wave oscillation forms at the wavelengths corresponding to the transmission minimum and maximum in the transmission spectrum, and the latter one originates from the excitation and interference of a surface plasmon wave at the metallic hole arrays. Our work indicates that monitoring optical near-field patterns can help to reveal many interesting properties of surface plasmon waves at metallic nanostructures and understand their underlying physical mechanisms.
We image optical near-field patterns at subwavelength circular hole arrays in Au film by using scanning near-field optical microscopy in near-infrared wavelengths. Periodical oscillation features are found in the near-field images at the air/Au interface and exhibit two typical kinds of standing wave oscillation forms at the wavelengths corresponding to the transmission minimum and maximum in the transmission spectrum, and the latter one originates from the excitation and interference of a surface plasmon wave at the metallic hole arrays. Our work indicates that monitoring optical near-field patterns can help to reveal many interesting properties of surface plasmon waves at metallic nanostructures and understand their underlying physical mechanisms.
基金
Project supported by the National Basic Research Program of China(Grant Nos.2011CB922002 and 2013CB632704)
the Knowledge Innovation Program of the Chinese Academy of Sciences