期刊文献+

改进的粒子群模糊聚类算法 被引量:7

Improved fuzzy clustering algorithm based on particle swarm optimization
下载PDF
导出
摘要 针对传统的模糊C-均值聚类算法对初始聚类中心较敏感、易陷入局部最优的缺点,将粒子群优化算法和FCM算法相结合,提出一种改进的模糊聚类算法。该算法利用粒子群算法的全局搜索能力代替FCM算法寻找初始聚类中心,使其跳出局部最优,实现模糊聚类。主要从反映数据集分类的类内紧致性程度和类间分离性程度的角度考虑,重新设计适应度函数。实验结果表明,提出的算法在聚类正确率和有效性指标上有更好的效果。 Aiming at the problem of traditional fuzzy C-means clustering algorithm that it is sensitive to the initial clustering centers and easy to fall into the local optimization, an improved algorithm that combines Particle Swarm Optimization algorithm with FCM algorithm is proposed. Depending on utilizing the global searching ability of Particle Swarm Optimization algorithm instead of the FCM algorithm, the new algorithm searches the initial cluster centers and escapes from the local optimization so as to achieve fuzzy clustering at last. Meanwhile, it mainly redesigns the fitness function from the perspective of compactness in intra-class and separation in inter-class. The experimental results show that the proposed algorithm has a better effect on both the cluster validity indexes and clustering accuracy.
出处 《计算机工程与应用》 CSCD 2013年第22期115-118,122,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61103129 No.61202312) 江苏省科技支撑计划资助项目(No.BE2009009)
关键词 模糊聚类 模糊C-均值聚类算法 粒子群优化算法 紧凑性 分离性 fuzzy clustering Fuzzy C-means(FCM) Particle Swarm Optimization(PSO) compactness separation
  • 相关文献

参考文献15

二级参考文献60

共引文献127

同被引文献62

  • 1彭光金,王富平,么远,朱辉,刘瑜,邢晓蕊.基于PSO-LSSVM的电力造价灵敏度分析[J].电工技术学报,2013,28(S2):391-394. 被引量:5
  • 2刘文远,王颖洁,邓成玉,王宝文,石岩,方淑芬.基于遗传算法的模糊聚类分析[J].计算机工程,2004,30(19):117-118. 被引量:12
  • 3昝鹏,颜国正,于莲芝.基于神经网络PID控制的柔性微机器人系统[J].机器人,2007,29(3):219-223. 被引量:8
  • 4康燕,孙俊,须文波.具有量子行为的粒子群优化算法的参数选择[J].计算机工程与应用,2007,43(23):40-42. 被引量:19
  • 5曲福恒,崔广才,李岩芳,等.模糊聚类算法及应用[M].北京:国防工业出版社,2011.
  • 6孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用[M].北京:清华大学出版社,2011.
  • 7ZHOU Y, WU X, LI G. Research on PID Controller on BP Neural Networks [ J ]. Journal of Air Force Force Engineering University( Natural Science Edition). 2007,4:014.
  • 8Zhang G D, Yang X H, Lu D Q, et al. Research on Pres- surizer Pressure Control System Based on BP Neural Network Control of Self-Adjusted PID Parameters [ J ]. Applied Me- chanics and Materials, 2013, 291:2416-2423.
  • 9Ying J, Pan H, Dai J. BP network based aeroengine iden- tification using modified partMe swarm optimization. Control Conference (CCC), 2013 32nd Chinese. IEEE, 2013: 3321-3325.
  • 10Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1-3):489-501.

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部