期刊文献+

基于单元集群的MapReduce中节点失效的改进 被引量:1

The improvement of the failure problem of node in MapReduce based on unit cluster
下载PDF
导出
摘要 针对传统MapReduce框架中任务节点和工作节点的失效问题,提出了在配置备份节点的分层主从式MapReduce框架中加入单元集群的处理方法。在改进框架中,任务处理的最小单位是单元集群,当单元集群中的某个工作节点失效或者超过时间阙值时,子任务节点则选择该单元集群中的空闲工作节点来分配任务,并且不需要重新传输任务文件分块,这既节省了工作节点重选择的时间,又降低了网络传输的压力。使用该框架针对不同数量的数据块进行实验,工作节点的灾难恢复时间均可以节省25ms左右,证明了单元集群的处理方法可以有效解决工作节点的失效问题。 Against the failure problem of Master Node and Worker Node in the traditional MapReduce framework, proposing a solution of adding unit cluster in the hierarchical master-slave MapReduce framework with Master backup nodes, in this improve- ment framework, for a sub-master node, the minimum unit of executing task is a unit cluster. When a worker node in the unit cluster failing or exceeding the time threshold, the sub-master node selects the idle nodes in this unit cluster to execute the task and does not retransmit the task file block, this not only saves the time of reselecting node, but also reduces the pressure of net- work transmission.In the experiment of using this framework, against the different number of the data blocks, the disaster recovery time of the worker node era1 save about 25 ms. The experiment results demonstrates the solution of unit cluster can effectively solve the failure problem of the worker node.
作者 张乐
出处 《微型机与应用》 2013年第16期81-84,共4页 Microcomputer & Its Applications
关键词 Hadoop架构 MAPREDUCE框架 任务节点 工作节点 备份节点 节点失效 单元集群 Hadoop architecture MapReduce framework master node worker node backup node failure node unit cluster
  • 相关文献

参考文献7

  • 1陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1312
  • 2WHITE T.Hadoop:the definitive guide[M].California:O'Reilly Media,2012.
  • 3DEAN J,GHEMAWAT S.MapReduce:simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 4BORTHAKUR D.HDFS architecture guide[DB/OL].Hadoop apache project.(2008-02-14).[2013-04-22].http://hadoop.apache.org/common/docs/current/hdfsdesign.pdf.
  • 5CONDIE T,CONWAY N,ALVARO P,et al.MapReduce online[C].Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation,2010:21-21.
  • 6李玉林,董晶.基于Hadoop的MapReduce模型的研究与改进[J].计算机工程与设计,2012,33(8):3110-3116. 被引量:36
  • 7彭辅权,金苍宏,吴明晖,应晶.MapReduce中shuffle优化与重构[J].中国科技论文,2012,7(4):241-245. 被引量:8

二级参考文献45

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献1347

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部