期刊文献+

基于随机矩阵变换的快速PCA算法 被引量:2

A new fast principal component analysis based on random matrix
下载PDF
导出
摘要 主成分分析PCA(Principle Component Analysis)是一种重要的分析方法,广泛应用于图像检索、机器学习、模式识别等领域。随着近年来数据维数越来越大,算法的稳定性、时间复杂度和内存使用成了PCA进一步应用所必须要解决的问题。为此提出一种快速算法,该算法利用随机矩阵构造卷数据降维矩阵,在保持点与点之间"核距离"不变的情况下,将待分解矩阵变换成一个低维矩阵。在没有偏差的情况下,将对原始大矩阵的分解变成对这个低维矩阵的分解,大幅降低了时间复杂度,减少了对内存的使用,同时增加了算法的稳定性,从而在根本上解决了上述3个问题。 Principal Component Analysis (PCA) is an important method of analysis, widely used in image retrieval, machine learning, pattern recognition and other fields. With the recent growing number of data dimensions, stability, time complexity and memory usage of the algorithm have become problems of further application of the PCA that must be solved. Therefore, the authors present a fast algorithm that uses the random matrix to make wrapped dimensionality reduction data matrix in order to keep "nucle- ar distance" between points unchanged. The original matrix needed to be decomposed has been transformed into a low-dimensional matrix in the case of no deviation. Therefore we significantly reduce the time complexity and memory usage while increasing the stability of the algorithm, fundamentally solve the above three problems.
出处 《微型机与应用》 2013年第20期83-86,共4页 Microcomputer & Its Applications
基金 国家自然基金资助项目(61105085)
关键词 主成分分析 随机矩阵 卷数据降维矩阵 时间复杂度 principal component analysis random matrix wrapped dimensionality reduction data matrix time complexity
  • 相关文献

参考文献3

二级参考文献24

  • 1冯毅,王香华.小波变换降噪处理及其Matlab实现[J].数据采集与处理,2006,21(B12):37-39. 被引量:21
  • 2唐湘燕,陈效华.基于神经网络的火炮自动供输弹装置故障预测[J].火炮发射与控制学报,2007,28(1):54-58. 被引量:11
  • 3WRIGHT J, PENG Yi-gmg, MA Yi. Robust principal component analysis : exact recovery of corrupted low-rank matrices by convex opti- mization[ C ]//Advance in Neural Information Processing Systems. 2009 : 2080- 2088.
  • 4WU Xiao-jun,JOSEF K,YANG Jing-yu,et al. A new direct LDA (D- LDA) algorithm for feature extraction in flce recognition [ C ]//Proe of the 17th International Conference on Pattern Recognition. 2004:545- 548.
  • 5HYVARINEN A, OJA E. Independent component analysis: algo- rithms and applications [Jl. Noural Networks,2000,'13(4-5) :411- 430.
  • 6ZHAO Ying,ATKESON C G. Implementing projection pursuit learning [J]. IEEE Trans on Neural Networks,1996,7(2) :362-373.
  • 7NICOLAS G, FRANCOIS G. A multilevel approach Ior nonnegative matrix faetorization [ J ]. Journal of Computational and Applied Mathematics, 2012,236 ( 7 ) : 1708-1723.
  • 8BURGES C J C. Dimension reduction:a guided tour[ J ]. Founda- tions and Trends in Machine Learning,2009,2(4) :275-365.
  • 9AILON N, CHAZELLE B. Faster dimension reduction [ J ]. Communi- cations of the ACM,2010,53(2) :97-104.
  • 10KE Qi-fa,KANADE T. Robust L1 norm factorization in the psence of outliers and missing data by alternative convex programming[ C]// Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004:739-746.

共引文献80

同被引文献16

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部