期刊文献+

一种交通拥堵自动检测方法 被引量:5

An Automatic Traffic Congestion Detection Method
下载PDF
导出
摘要 目前,高速公路交通拥堵日趋频繁,然而大部分高速公路的管理方式仍然是通过人工查看轮巡监控视频来发现交通拥堵,效率低下。本文提出一种对高速公路轮巡监控视频自动检测交通拥堵的方法。该方法实时检测监控视频场景是否轮巡、切换、变动,自适应提取变动场景的道路边界结构并分类,然后在提取的道路边界结构范围内,计算宏观边缘占有率与加权平均光流速度两个宏观交通状态参数,并构造特征集,根据不同的道路边界类型选择对应支持向量机来实现对交通拥堵的自动检测和判别。实验结果表明,该方法能有效地对轮巡模式工作的高速公路监控视频检测交通拥堵,检测时间不大于30s,检测正确率达91.8%。 Traffic congestion is increasingly serious in expressway, and manual surveillance is still a main way to find traffic congestion, which is very ineffective. In this paper, an automatic traffic congestion detection method for expressway surveillance videos is presented. Firstly, the road boundary structure of surveillance video is extracted adaptively. Secondly, edge occupancy rate and weighted average velocity of optical flow in the range of extracted road are calculated. Finally, the traffic congestion is detected by analyzing the two macro traffic state parameters. The experimental test results show that this method is effective for express- way switching surveillance video, the detection time is less than 30 seconds, and the detection accuracy rate is above 91.8%.
出处 《计算机与现代化》 2013年第11期28-33,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(51078362) 公安部应用创新计划项目(2011YYCXGDST078)
关键词 交通拥堵检测 边缘占有率 宏观光流速度 高速公路 轮巡监控视频 traffic congestion detection edge occupancy rate macro optical flow velocity expressway switching surveillance video
  • 相关文献

参考文献13

  • 1尹建新,莫路锋.边界与区域相融合的非结构化道路检测算法[J].计算机工程,2008,34(15):217-219. 被引量:6
  • 2Hui Kong J, Audibert Y, Ponce J. General road detection from a single image[ J]. IEEE Transactions on Image Pro- cessing, 2010,19 (8) :2211-2220.
  • 3Jianming H, Qiang M, Qi W, et al. Traffic congestion i- dentification based on image processing [ J ]. Intelligent Transport Systems, 2012,6(2) :153-160.
  • 4Li Li, Chen Long, Huang Xiaofei, et al. A traffic conges- tion estimation approach from video using time-spatial im- agery[ C]//ICINIS 08, IEEE, 2008:465-469.
  • 5Porikli F, Li Xiaokun. Traffic congestion estimation usingHMM models without vehicle tracking[ C ]/! IEEE Intelli- gent Vehicles Symposium. 2004 : 188-193.
  • 6Bauza R, Gozalvez J, Sanchez-Soriano J. Road traffic con- gestion detection through cooperative vehicle-to-vehicle communications[ C]//2010 IEEE the 35th Conference on Local Computer Networks. 2010:606-612.
  • 7Nikos P, Rachid D. Active contours and level sets for the detection and tracking of moving objects [ J ]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2000,22(3) :266-280.
  • 8Kiryati N, Eldar Y, Bruckstein A M. A probabilistic Hough transform[ J]. Pattern Recognition, 1991,24(4) :303-316.
  • 9Canny J. A computational approach to edge detection[ C ]/! IEEE Trans. on Pattern Analysis and Machine Intelligence. 1986:679-714.
  • 10肖旺新,张雪,黄卫.视频交通图像自适应阈值边缘检测[J].交通运输工程学报,2003,3(4):104-107. 被引量:13

二级参考文献32

共引文献19

同被引文献68

  • 1罗东华,余志,李熙莹.一种视频交通流检测场景中的自适应道路结构提取算法[J].公路交通科技(应用技术版),2009,5(3):165-168. 被引量:2
  • 2邓剑文,安向京,贺汉根.基于道路结构特征的自主车视觉导航[J].吉林大学学报(信息科学版),2004,22(4):415-419. 被引量:14
  • 3陶茂垣,卢正鼎,袁武钢,凌贺飞,邹复好.基于图像尺度空间的几何不变特征点提取算法[J].电子学报,2006,34(B12):2564-2568. 被引量:8
  • 4连静,王珂,杨兆升.结合信号配准技术的小波多尺度车辆边缘检测方法[J].中国公路学报,2007,20(5):95-100. 被引量:4
  • 5Porikli F, Li X. Traffic congestion estimation using HMM models without vehicle tracking[C]. IEEE. Intel- ligent Vehicles Symposium, 2004: 188-193.
  • 6Kosala R, Adi E. Harvesting real time traffic informa- tion from twitter[J]. Procedia Engineering, 2012, 50: 1-11.
  • 7Sakaki T, Matsuo Y, Yanagihara T, et al. Real-time event extraction for driving information from social sensors[C]. IEEE. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2012: 221-226.
  • 8中国新闻网.新浪微博登陆纳斯达克曹国伟称市场环境不太有利[EB/OL].http:∥WWW.chinanews.com/it/2014/04—18/6077631.shtml,2014-04—18.
  • 9Ryong L, Shoko W, Kazutoshi S. Urban area charac- terization based on crowd behavioral lifelogs over Twit- ter[J]. Personal and Ubiquitous Computing, 2013, 17 (4) : 605-620.
  • 10Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users. Real-time event detection by social sen- sors[C]. Proceedings of the 19th international confer- ence on World Wide Web. ACM, 2010. 851-860.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部