摘要
非线性项是产生混沌的必要条件,本文研究只含有一个非线性立方项系统的混沌行为和其控制器的设计。首先,在磁弹体系统的基础上,构造一个新的只含一个立方项的非线性系统,采用非线性动力学分析方法包括耗散性、Poincare映射和Lyapunov指数谱,对系统进行动力学分析,证实了该系统混沌的存在性。其次,为了消除系统的混沌行为,通过设计滑模控制器,将系统分别控制到期望的固定点和周期轨道。最后,通过MATLAB数值仿真验证了所设计的控制器的有效性。
The nonlinear term is a neccessary condition for chaos, the paper studies a new four-dimensional chaos with only one cubic term and its control. Based on the magneto-elastic system, the new system is proposed and its dynamic characteristics are analyzed, including the phase trajectory map, Poincare map, Lyapunov exponents, and so on. And a new sliding mode control method is designed for the chaos control. The system is controlled to the expected fixed point and periodic orbit respectively. MATLAB simulations are presented to confirm the effectiveness of the controller.
出处
《计算机与现代化》
2013年第11期38-42,共5页
Computer and Modernization
基金
国家自然科学基金资助项目(51202200)
关键词
一个立方项
混沌
混沌分析
滑模控制
one cubic term
chaos
chaos analysis
sliding mode control