期刊文献+

四倍体小麦单株籽粒蛋白质、铁及锌的产量QTL定位与分析 被引量:1

QTL Mapping Analysis of the Yield of Grain Protein,Fe and Zn of Single Plant Using RIL Population from Durum Wheat × Wild Emmer Wheat
下载PDF
导出
摘要 为了给普通栽培小麦蛋白质和Fe、zn营养的改良提供参考依据,将来自欧洲的四倍体小麦栽培品种Langdon与源于以色列Gitit的野生二粒小麦G18-16杂交重组自交系F6代的152个家系种植于以色列希伯来大学不同年份的3个干旱和湿润环境(2005年干旱与湿润环境以及2007年湿润环境)下,并进行籽粒蛋白质、Fe和Zn单株产量的数量性状基因位点(QTL)分析。结果发现全部家系在3个不同环境下这三个性状均表现出宽广的遗传差异,共有22个籽粒蛋白质、Fe和Zn单株产量的QTL被分别定位在9条染色体上,LOD值为3.1~15.9,贡献率为2.3%~18%,8个QTL受到环境的影响。仅分布于2A和4A染色体上的籽粒Fe单株产量的QTL存在基因上位性影响。 The genetic and phenotypic basis for the yield of grain protein, Fe and Zn of one plant (GPY, GFeY and GZnY) was studied in tetraploid wheat population consisting of 152 F6 recombinant inbreed lines (RILs) derived from a cross between T. dicoccoides (acc ~ G18-16) and durum wheat cultivar (Langdon) grown under three different environmental conditions in The Hebrew University of Jerusalem in Israel, e.g. water-limited (dry), well-watered (wet) environments in 2005, and well- watered (wet) environment in 2007. Wide genetic variation was found among RILs for GPY, GFeY and GZnY. A total of 22 QTLs on nine chromosomes associated with grain protein, Fe and Zn yield of one plant were detected, with a LOD score range of ca. 3.1 to 15.9, explaining phenotypic variation of 2.3% to 18%. Eight QTLs showed interactions with environmental conditions. A significant two-loci epistasis was only found between the QTLs in 2A and 4A controlling GFeY. The identified QTLs could be useful in future marker-assisted selection programs, facilitating the use of wild alleles for yield enhancement in elite wheat cultivars.
出处 《麦类作物学报》 CAS CSCD 北大核心 2013年第6期1149-1155,共7页 Journal of Triticeae Crops
基金 四川省国际科技合作与交流研究计划项目(2012HH0041) 贵州省国际科技合作计划项目(黔科合外G字【2012】7011号) 国家国际科技合作专项(2013DFA32200)
关键词 四倍体小麦 野生二粒小麦 蛋白质 Fe Zn 数量性状基因位点(QTL) Wild emmer wheat Triticum dicoccoides Protein Fe Zn Quantitative trait locus(QTL)
  • 相关文献

参考文献18

  • 1Uauy C,Distelfeld A, Fahima T, et al. A NAC gene regulating senescence improves grain protein, Zinc, and Iron content in wheat [J. Science,2006,314 1299-1301.
  • 2Peleg Z,Cakmak I,Ozturk L,et al. Quantitative trait loci con ferring grain mineral nutrient concentrations in durum wheat wild emmer wheat RIL population [J. Theoretical and Ap plied Genetics, 2009,119 : 353-369.
  • 3Brett F C. Wheat: science and trade [M]. Wiley-Blackwell, USA, 2009 : 616.
  • 4Nevo E,Korol A B, Beiles A, et al. Evolution of wild emmer and wheat improvement : population genetics, genetic resources and genome rganization of wheat's progenitor, rriticum dicoc- coides [ M]. Springer-Verlag, Berlin, 2002 : 364.
  • 5Yan J. Grain mineral and protein concentrations of wild emmer wheat (Triticum dicoccoides) and wild barley (Hordeum spontaneum) and their potential for crop improvement [D]. Ph. D. Thesis. Haifa University,Israel,2010.
  • 6Ozkan H,Brandolini A,Torun A,et al. Natural variation and identification of microelements content in seeds of Eikorn wheat (Triticum monococcum) l-C].//Buck H T, Nisi J E, Salom6n N (eds). Wheat Production in Stressed Environ- ments:Proceedings of the 7th international wheat conference. Mar del Plata, Argentina, 2007 : 455-462.
  • 7Shi R L,Li H W,Tong Y P,etal. Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L. ) grain [J]. Plant Soil,2008,306 : 95 104.
  • 8Gent Y, Verhyla A P, Torun A A, et al. Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping l-J]. Plant and Soil, 2009,314 : 49-66.
  • 9Tiwari V K,Rawat N,Chhuneja P,et al. Mapping of quanti- tative trait loci for grain iron and zinc concentration in diploid A genome wheat [J]. Journal of Heredity, 2009,100:771-776.
  • 10Pleijel H L, Mortensen J, Fuhrer K, et al. Grain protein accu- mulation in relation to grain yield of spring wheat (Triticum aestivum L. ) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability [J ]. Agriculture, Ecosystems and Environment, 1999, 72 : 265-270.

二级参考文献65

  • 1严建兵,汤华,黄益勤,郑用琏,李建生.玉米和水稻重要性状QTL的比较研究[J].Acta Genetica Sinica,2004,31(12):1401-1407. 被引量:18
  • 2周淼平,任丽娟,张旭,余桂红,马鸿翔,陆维忠.小麦产量性状的QTL分析[J].麦类作物学报,2006,26(4):35-40. 被引量:45
  • 3宋彦霞,景蕊莲,霍纳新,任正隆,贾继增.普通小麦(T.aestivum L.)不同作图群体抽穗期QTL分析[J].中国农业科学,2006,39(11):2186-2193. 被引量:25
  • 4Levy AA, Feldman M. Intra - and inter - population variation in grain protein percentage in wild tetraploid wheat. Tritieum turgid var. dieocchides [J]. Euphytica, 1989, 42:251 -258.
  • 5Wang JS, Liu WH, Wang H, et al. QTL mapping of yield - related traits in the wheat germplasm 3228 [ J ]. Euphytiea, 2010, DOI : 10. 1007/ s10681 -010 - 0267 - z (Online).
  • 6Peng J, Ronin Y, Fahlma T, et al. Domestication quantitative trait loci in Tritieum dicoccoldes, the progenitor of wheat [J]. Proc. Natl. Acad. Sci. USA, 2003, 100 : 2489 - 2494.
  • 7Paterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into Mendelian factors by using a comp lete linkagemap of restriction fragment length polymorphisms [ J]. Nature, 1988, 335 : 721 -726.
  • 8Mao Sun SY, Yao JL Linking differential domain functions of the GS3 protein to natural variation of grain size in rice [ J ]. Proc. Natl. Acad. Sci. USA, 2010, 107:19579-19584.
  • 9Gun M, Rupe MA, Dieter JA, et al. Cell Number Regulatorl affects plant and organ size in maize : Implications for crop yield enhancement and heterosis [ J]. Plant Cell, 2010, 22: 1057- 1073.
  • 10Huang XQ, Coster H, Ganal MW, et al. Ad - vanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L. ) [J]. Theory Apply Genet, 2003, 106: 1379- 1389.

共引文献25

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部