期刊文献+

应用自适应Morlet小波和NGA优化SVM的轴承故障诊断 被引量:6

Rolling Bearing Fault Diagnosis Using Adaptive Morlet Wavelet and NGA Optimized SVM
下载PDF
导出
摘要 针对滚动轴承故障诊断中出现的多故障分类问题,提出了一种利用自适应Morlet小波和小生境遗传算法(niche genetic algorithm,简称NGA)优化支持向量机(support vector machine,简称SVM)实现滚动轴承故障诊断的新方法。首先,采用自适应Morlet小波方法提取出最佳尺度附近的3个信号分量作为特征信号,分别计算它们的Shannon能量熵值作为特征量得到样本集,作为SVM的输入向量,并用样本集训练1-v-r SVM;然后,再构造一种新的核函数,并用NGA在SVM训练过程中对核函数参数进行优化,提高SVM学习机器的分类性能;最后,将本研究方法用于对含有较强噪声的实际滚动轴承的内圈、外圈、滚珠故障样本进行了分类识别。结果表明,该方法具有较好的抗噪和分类能力,验证了其有效性和可行性。 A rolling bearing fault diagnosis method is proposed based on adaptive Morlet wavelet and NGA optimized SVM.Firstly,three signal components nearby the appropriate scale as characteristic signals are extracted by adaptive Morlet wavelet,and their Shannon energy entropy are calculated respectively to form the sample set as input vector of SVM,in order to train the 1-v-r SVM.Then,a new nuclear function of SVM is constructed,and the kernel function parameters are optimized in the SVM training process by NGA in order to improve the classification performance of SVM.Finally,the experiment is carried out with the noisy rolling bearing mechanical fault data to prove its reliability and veracity.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2013年第5期751-755,908,共5页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51277166 51175478 51205369) 浙江省自然科学青年基金资助项目(LQ12E07002) 浙江省博士后科研择优资助项目(BSH1302015)
关键词 故障诊断 自适应Morlet小波 小生境遗传算法 支持向量机 fault diagnosis adaptive Morlet wavelet niche genetic algorithm support vector machine
  • 相关文献

参考文献10

  • 1吕勇,李友荣,王志刚.基于经验模式分解的轧机主传动减速机故障诊断[J].振动.测试与诊断,2007,27(2):112-115. 被引量:9
  • 2Lei Yaguo, He Zhengjia, Zi Yanyang, et al. Fault di- agnosis of rotating machinery based on multiple AN- FIS combination with GAs[J]. Mechanical Systems and Signal Processing, 2007,21(5) :2280-2294.
  • 3刘永斌,何清波,孔凡让,张平.基于PCA和SVM的内燃机故障诊断[J].振动.测试与诊断,2012,32(2):250-255. 被引量:56
  • 4董绍江,汤宝平,宋涛.改进投票策略的Morlet小波核支持向量机及应用[J].振动.测试与诊断,2011,31(3):314-317. 被引量:6
  • 5Holland J H. Adaptation in natural & artifical sys- tems[M]. Ann Arbrr. Mh University of Michigan Press, 1975:10-21.
  • 6Chang Weider. An improved real-coded genetic algo- rithm for parameters estimation of nonlinear systems [J]. Mechanical System and Signal Processing, 2006, 20(1) :236-246.
  • 7孙见青,汪荣贵,胡韦伟,李守毅.一种新的基于NGA/PCA和SVM的特征提取方法[J].系统仿真学报,2007,19(20):4823-4826. 被引量:6
  • 8Jiang Yonghua, Tang Baoping, Qin Yi, et al. Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD [J]. Renewable Energy, 2011,36(8) :2146-2153.
  • 9Avic E, Akpolat Z H. Speech recognition using a wavelet packet adaptive network based fuzzy inference system[J]. Expert System with Applications, 2006, 31(3) :495-503.
  • 10Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel [J]. Neural Computation, 2003,15 (7) :1667-1689.

二级参考文献38

共引文献73

同被引文献65

  • 1陈学华,贺振华,黄德济.基于广义S变换的地震资料高效时频谱分解[J].石油地球物理勘探,2008,43(5):530-534. 被引量:62
  • 2刘倩,崔晨,周杭霞.改进型SVM多类分类算法在无线传感器网络中的应用[J].中国计量学院学报,2013,24(3):298-303. 被引量:8
  • 3CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 4张延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
  • 5胡良谋,曹克强,徐浩军,等.支持向量机故障诊断及控制技术[M].北京:国防工业出版社,2011.
  • 6袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35. 被引量:89
  • 7Gulich D,Zunino L.The effects of observational correlated noises on multifractal detrended fluctuation analysis[J].Physica A:Statistical Mechanics and its Applications,2012,391(16):4100-4110.
  • 8Hajian S,Movahed M S.Multifractal Detrended Cross-Correlation Analysis of sunspot numbers and river flow fluctuations[J].Physica A:Statistical Mechanics and its Applications,2010,389(21):4942-4957.
  • 9Kantelhardt J M,Zschiegner S A,Koscielny B E,et al.Multifractal detrended fluctuation analysis of nonstationary time series[J].Physics A:Statistical Mechanics and its Applications,2002,316(1/2/3/4):87-114.
  • 10D O N O H O D L.De-NoiingbySoft-TTreCiolding[J].IEEETransactions on Information Theory,1995,41 ( 3 ) : 613627.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部