期刊文献+

超高压通电烧结钨金刚石复合材料及其导热性能

Preparation and thermal conductivity property of tungsten-diamond composites
下载PDF
导出
摘要 以钨粉和镀钛金刚石颗粒为原料,采用超高压力下通电烧结(resistance sintering under ultra high pressure,RSUHP)的方法制备钨金刚石复合材料,利用X射线衍射(XRD)以及扫描电镜(SEM)对该复合材料的物相组成及断口形貌进行表征,利用LFA427激光热导测试仪测试材料的常温和高温热导率,并与纯钨的常温热导率进行对比,同时还分析在不同功率下烧结及不同温度下退火时,钨和金刚石的反应情况。结果表明,超高压烧结功率低于4.5 kW时,可避免碳化钨的生成;钨金刚石复合材料作为高热导材料的适宜服役温度应低于900℃。金刚石的加入使钨的室温热导率从127.3 W/(m·K)显著提高到176.3 W/(m·K),但随温度升高而降低。 Tungsten-diamond composites were prepared by resistance sintering under ultra high pressure (RSUHP) using tungsten powders and titanium plated diamond particles as raw materials. The phase composition and fracture morphologies were characterized by XRD and SEM. The thermal conductivity of pure tungsten at room temperature and tungsten-diamond composites at room temperature and elevated temperature were tested and compared using LFA427 laser thermal conductivity testing instrument. The tungsten-diamond reaction conditions of samples sintered by different power and annealed at different temperatures were investigated. The results show that WC can not form when the sintering power is lower than 4.5 kW. It can be determined that the appropriate working temperature of tungsten-diamond composite as high thermal conductivity material must be lower than 900 ℃. The addition of diamond makes the room temperature thermal conductivity improves from 127.3 W/(m?K) to 176.3 W/(m?K), which drops while temperature gets higher.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2013年第5期713-717,共5页 Materials Science and Engineering of Powder Metallurgy
基金 国家重点基础研究发展规划(973计划)资助项目(2010GB109000)
关键词 金刚石 热导率 高温 碳化钨 tungsten diamond thermal conductivity elevated temperature WC
  • 相关文献

参考文献18

  • 1PHILIPPS V. Tungsten material for plasma-facing components in fusion devices [J]. Journal of Nuclear Materials, 2011, 415(1): S2-S9.
  • 2VELEVAA L, OKSIUTAA Z, VOGTB U, et al. Sintering and characterization of W-Y and W-Y2O3 materials [J]. Fusion Engineering and Design, 2009, 84(7/11): 1920-1924.
  • 3WURSTER S, GLUDOVATZ B, PIPPAN R. High temperature fracture experiments on tungsten-rhenium alloys [J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(6): 692-697.
  • 4MABUCHI M, OKAMOTO K, SAITO N, et al. Deformation behavior and strengthening mechanisms at intermediate temperature in W-La203 [J]. Material Science Engineering A, 1997, 237(2): 241-249.
  • 5MABUCHI M, SAITO N, NAKANISHI M, et al. Tensile properties at elevated temperature of W-l%La2O3 [J]. Material Science and Engineering A, 1996, 214( 1/2): 174-176.
  • 6KIM Y, LEE K H, KIM Eun-Pyo, et al. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process [J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(5): 842-846.
  • 7KING G W, SELL H G. The effect of thoria on the elevated temperature tensile properties of recrystallized high-purity tungsten [J]. Trans AIME, 1965, 233(1): 1104-1.
  • 8CHEN L C. Dilatometric analysis of sintering of tungsten and tungsten with ceria and hafnia dispersions [J]. International Journal of Refractory Metals and Hard Materials, 1993/1994,12(1): 41-51.
  • 9SONG Gui-ming, WANG Yu-jin, ZHOU Yu. Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications [J]. International Journal of Refractory Metals & Hard Materials, 2003, 21(1/2): 1-12.
  • 10REA K E, VISWANATHAN V, KRUIZE A, et al. Structure and property evaluation of a vacuum plasma sprayed nanostructured tungsten-hafnium carbide bulk composite [J]. Materials Science and Engineering: A, 2008, 477(1/2): 350-357.

二级参考文献12

  • 1叶途明,易健宏,彭元东,胡礼福,吕豫湘.纳米晶高密度钨合金的研究进展[J].稀有金属,2004,28(4):726-730. 被引量:11
  • 2邹仿棱.国内纳米钨系列产品的专利状况浅析[J].中国钼业,2005,29(1):11-16. 被引量:1
  • 3R.M.German, J.Ma, X.Wang, E.Olevsky, Processing model for tungsten powders and extension to nanescale size range, Powder Metallurgy, 49(1), 19(2006)
  • 4J.Mohit, S.Ganesh, M.Krista, K.Deepak, C.Kyu, K.Bradley, D.Robert, A.Dinesh, J.Cheng, Microwave sintering: A new approach to fine-grain tungsten-I, International Journal of Powder Metallurgy, 42(2), 45(2006)
  • 5Y.Kitsunai, H.Kurishita, H.Kayano, Y.Hiraoka, T.Igarashi, T.Takida, Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC, Journal of Nuclear Materials, 271-272, 423(1999)
  • 6J.Mohit, D.Robert, S.Ganesh, K.Deepak, M.Krista, A.Dinesh C.Kyu, J.Cheng, K.Bradley, Microwave sintering: A new approach to fine-grain tungsten-II International Journal of Powder Metallurgy, 42(2) 253(2006)
  • 7Z.A.Munir, U.Anselmi-tamburini, M.Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, 41, 763(2006)
  • 8K.Moon, H.Park, K.Lee, Consolidation of nanocrystalline Al-5at.% Ti alloy powders by ultra high-pressure hot pressing, Materials Science and Engineering A, 323, 293(2002)
  • 9Z.Zhou, J.Du, S.Song, C.Ge, Microstructural Characteri- zation of W-Cu Functionally Graded Materials by one step resistance sintering method, Journal of Alloy and Compound, 428, 146(2007)
  • 10王志法,姜国圣,刘正春.钨的超高压成型与低温烧结[J].稀有金属材料与工程,1998,27(5):290-293. 被引量:13

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部