期刊文献+

重尾分布下医疗保险保费合理性评估——基于上海市闵行区新农合的实证研究 被引量:3

Evaluate the Medical Insurance Premium under Heavy-tailed Distribution:Empirical Research on NCMS of Minhang(Shanghai)
原文传递
导出
摘要 重尾是医疗费用以及医疗保险损失分布的常见特征之一,本文构建了在重尾分布下,医疗保险经营者科学评估医疗保险保费合理性的模型和方法。当医疗费用面临二阶矩不存在的重尾性下,稳定分布理论中的广义中心极限定理可以取代古典的中心极限定理去评估医疗保险保费的合理性。本文最后用2008年上海市闵行区新型农村合作医疗的住院医疗费用数据进行了实证分析,全面探测了医疗费用的重尾性以及在尾部指标的基础上,估计了闵行区新农合筹资的合理性. The heavy-tailed distribution is one of common phenomena in modeling the medical expenditure data as well as the medical insurance losses data. This paper constructs a scientific model for medical insurance operator to evaluate the rationality of medical insurance premium under the heavy-tailed distribution. When the second moment does not exist in medical expenditure data under the heavy-tailed distribution, the generalized central limit theorem in stable distribution theory may substitute for the classical central limit theorem to evaluate the medical insurance premium's rationality. Finally, The paper uses hospital medical expenditure data of the new rural cooperative medical insurance in Minhang(Shanghai) in year 2008 to carry on the empirical analysis. We detect the medical expenditure obeying heavy-tail distribution comprehensively and furthermore estimate the rationality of financing based on the theory above.
出处 《数理统计与管理》 CSSCI 北大核心 2013年第6期974-983,共10页 Journal of Applied Statistics and Management
基金 西南财经大学211工程三期建设项目资助
关键词 重尾分布 稳定分布 医疗保险 heavy-tailed distribution, stable distribution, medical insurance
  • 相关文献

参考文献16

  • 1Gerber Hans U. An Introduction to Mathematical Risk Theory [A]. Huebner S S. Foundation for Insurance Education [C]. Wharton School, University of Pennsylvania, 1979.
  • 2Cantoni E, Ronchetti E. A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures [J]. Journal of Health Economics, 2006, 25(2): 198 213.
  • 3Manninga W G, Mullahy J. Estimating log models: To transform or not to transform [J]. Journal of Health Economics, 2001, 20(4): 461-494.
  • 4Markovich N. Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and Practice [M]. England: John Wiley and Sons Ltd, 2007.
  • 5Tang Q, Tsitsiashvili G. Precise estimates for the ruin probability infinite horizon in a discrete-time model with heavy-tailed insurance and financial risks [J]. Stochastic Processes and their Applications, 2003, 18(2): 299 325.
  • 6欧阳资生.厚尾分布的极值分位数估计与极值风险测度研究[J].数理统计与管理,2008,27(1):70-75. 被引量:17
  • 7赵桂芹,粟芳.汽车交通事故损失分布的尾部估计[J].数理统计与管理,2008,27(6):1009-1015. 被引量:2
  • 8周为.医疗保险精算模型与方法研究[D].华西医科大学博士学位论文,1998.
  • 9Vasileios Keisoglou. Application of Statistical Methods in the Determination of Health Loss Distribu- tion and Health Claims Behaviour (Technical report) [R]. Department of Mathematical Statistics at Stockholm University, available at http://www2.math.su.se/matstat/reports/serieb/2OO5/rep8/report.pdf 2005.
  • 10Kaas R, Goovaerts M J, Dhaene J, and Denuit M. Modern actuarial risk theory [M]. Boston: Kluwer Academic Publishers, 2001.

二级参考文献24

共引文献17

同被引文献16

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部