期刊文献+

基于最大似然估计的自适应阈值视频被动取证 被引量:2

A Maximum Likelihood Estimation-based Adaptive Threshold for Passive Video Forensics
下载PDF
导出
摘要 基于分块级的模式噪声,提出一种基于最大似然估计的自适应阈值视频被动取证方法.它采用小波去噪和维纳滤波提取传感器的模式噪声,并通过固定大小的滑动窗口,计算分块级的能量梯度、信噪比和相邻帧相同位置块模式噪声的相关性构造特征值向量.在此基础上,采用最大似然估计得到判别篡改区域的自适应阈值.仿真实验结果表明,提出的方法对于复制-粘贴的视频内容篡改取得了较好的取证效果,并且能够对较小区域的篡改进行定位. Based on the block-level sensor pattern noise (SPN),a video forensics scheme,whose adaptive-threshold is obtained by maximum likelihood estimation,was proposed.It extracts the SPN by wavelet de-noising and Weiner filter.By setting a sliding window of fixed size,block-based energy gradient,signal-noise ratio and the correlation between the SPN of blocks with the same positions in neighboring frames are computed to build a feature vector.The maximum likelihood estimation is utilized to obtain the adaptive threshold of classification.Experiment results show that the proposed approach is effective for the forensics of copy-paste based tampering to the contents of digital video.Moreover,it can locate the tampering of small regions in digital video.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第11期96-100,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(61072122 61379143) 教育部新世纪优秀人才计划资助项目(NCET-11-0134) 教育部高等学校博士学科点专项科研基金资助项目(20120161110014) 湖南省自然科学基金重点资助项目(11JJ2053)
关键词 视频被动取证 多特征向量 欧氏距离 最大似然估计 passive video forensics multi-eigenvectors Euclidean distance maximum likelihood estimation
  • 相关文献

参考文献4

二级参考文献51

  • 1张桂东,茅耀斌,王执铨.一种基于运动矢量的视频水印方案[J].中山大学学报(自然科学版),2004,43(A02):117-119. 被引量:9
  • 2黄洪宇,林甲祥,陈崇成,樊明辉.离群数据挖掘综述[J].计算机应用研究,2006,23(8):8-13. 被引量:42
  • 3薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 4S Thiemert,H Liu,M Steinebach,L Croce-Ferri.Joint forensics and watermarking approach for video authentication[A].Proceedings of Conference on Security,Steganography,and Watermarking of Multimedia Contents IX[C].San Jose,USA:SPIE,2007,65050Q.
  • 5C Baris,S Bulent,N Memon.Spatio-temporal transform based video hashing[J].IEEE Transactions on Multimedia,2006,8(6):1190-1208.
  • 6M K Mihcak,I Kozintsev,K Ramchandran.Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising[A].Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing[C].Phoenix,USA:IEEE Signal Processing Society,1999.3253 -3256.
  • 7N Mondaini,R Caldelli,A Piva,M Bami,V Cappellini.Detection of malevolent changes in digital video for forensic applications[A].Security,Steganography,and Watermarking of Multimedia Contents IX[C].San Jose,USA:SPIE,2007,65050T.
  • 8K Kenji,K Kenro,S Naoki.CCD Fingerprint method-identification of a video camera from videotaped images[A].Proceedings of IEEE International Conference on Image Processing[C].Kobe,Jpn:IEEE Signal Processing Society,1999.537 -540.
  • 9C C Hsu,T Y Hung,C W Lin,C T Hsu.Video forgery detection using correlation of noise residue[A].Proceedings of the 10th Workshop on Multimedia Signal Processing[C].Cairns,Australia:IEEE Computer Society,2008.170-174.
  • 10W Wang,H Farid.Exposing digital forgeries in video by detecting duplication[A].Proceedings of the 9th Multimedia and Security Workshop[C].Dallas,USA:ACM Special Interest Group on Multimedia,2007.35-42.

共引文献20

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部