期刊文献+

动态载荷下种植体位置和直径对悬臂梁种植固定义齿应力影响的三维有限元研究 被引量:16

Three-dimensional finite element analysis of the effect of the location and diameter of implants on the stress distribution in three-unit implant-supported posterior cantilever fixed partial dentures under dynamic loads
下载PDF
导出
摘要 目的应用三维有限元法分析动态加载下种植体植入位置和直径对悬臂梁种植固定义齿应力的影响。方法建立左下颌第二前磨牙、第一磨牙、第二磨牙缺失种植固定义齿的三维有限元模型,远中种植体的位置和直径保持不变;近中种植体依次向远中移动形成中轴与第一前磨牙远中面距离D分别为5.5、8.0、10.5、13.0 mm的悬臂梁种植固定义齿,分别采用4.1和4.8 mm两种直径的种植体;以250 N力模拟咀嚼周期0.875 s的动态载荷加载于颊尖和舌尖上,应用有限元分析软件MSC.Marc和Partran分析种植体—骨组织界面的Von Mises应力情况。结果随着近中种植体逐渐向远中移动,近远中种植体Von Mises应力均有不同程度增高,近中种植体中轴与第一前磨牙远中面距离D≤8.0 mm范围内种植体最大Von Mises应力增幅缓和,D>8.0 mm时应力急剧加大;近中种植体直径增大,则近远中种植体的应力减小;各加载阶段最大Von Mises应力均处于近远中种植体颈部与皮质骨交界处;斜向加载种植体应力显著大于垂直加载。结论种植体植入位置是影响悬臂梁种植固定义齿应力的重要因素,悬臂梁长度不超过前磨牙宽度时行种植固定义齿设计是可行的,直径的选择要考虑骨量和悬臂梁长度双重因素。 Objective To examine the effect of the location and diameter of implants on stress distribution in three-unit implant-supported posterior cantilever fixed partial dentures (FPD) in the mandible. Methods A three-dimensional finite element model was developed to represent a rigid implant-supported posterior FPD that restores the second left premolar, first molar, and second molar. The location of the distal implant with a diameter of 4.8 mm remained the same, whereas the mesial implants with diameters of 4.1 and 4.8 mm were successively moved toward the posterior area with distances of 5.5, 8.0, 10.5, and 13.0 mm from the long axis of the mesial implants to the first premolar to form the cantilever FPD. Dynamic loads of 250 N were applied from different directions on the buccal and lingual cusps of the FPD to simulate the masticatory cycle for 0.875 s. The maximum Von Mises stresses were calculated using the finite element analysis software MSC. Marc and Partran. Results The maximum Von Mises stresses of the mesial and distal implants increased to some extent as the me- sial implants moved toward the posterior area. Significant increases in the maximum Von Mises stresses were obtained when the mesial implants were located more than 8.0 mm posterior to the first premolar, and moderate increases in the stresses were observed when the mesial implants were located less than 8.0 mm posterior to the first premolar. The use of a broader implant reduced the stress on the interface between the bone and the implants. The maximum Von Mises stresses were found in the cervical region of the mesial or the distal implants cortical bone adjacent to the during stages II to IV of the masticatory cycle. Off-axial loading induced more stresses compared with vertical loading. Conclusion The location of implants in three-unit implant-supported posterior cantilever FPD is a significant factor that influences the stress generated in the interface between the bone and the implants. An implant- supported cantilever FPD is a feasible option for restoring missing teeth when the length of the cantilever is not greater than the width of a premolar. Two important factors should be considered before choosing the implant diameter, namely, bone volume and cantilever length.
出处 《华西口腔医学杂志》 CAS CSCD 北大核心 2013年第6期552-556,共5页 West China Journal of Stomatology
关键词 种植固定义齿 悬臂梁 动态载荷 有限元分析 implant-supported fixed partial denture cantilever dynamic loads finite element analysis
  • 相关文献

参考文献11

  • 1Vafaei F, Khoshhal M, Bayat-Movahed S, et al. Compa- rative stress distribution of implant-retained mandibular ball-supported and bar-supported overlay dentures: a finite element analysis [J]. J Oral Implantol, 2011, 37(4):421-429.
  • 2Romeo E, Lops D, Margutti E, et al. Implant-supported fixed cantilever prostheses in partially edentulous arches. A seven-year prospective study[J]. Clin Oral Impl Res, 2003, 14(3):303-311.
  • 3Yokoyama S, Wakabayashi N, Shiota M, et al. The influence of implant location and length on stress distribution for tree- unit implant-supported posterior cantilever fixed partial den- tures[J]. J Prosthet Dent, 2004, 91(3):234-240.
  • 4皮昕.121腔解剖生理学[M].6版.北京:人民卫生出版社,2007:288-289.
  • 5郭莹,唐亮,潘燕环.动态载荷下单端桥基牙牙周膜应力的三维有限元分析[J].中华口腔医学杂志,2009,44(9):553-557. 被引量:10
  • 6Koka P, Mohapatra A, Anandapandian PA, et al. The effect of implant design on the stress distribution in a three-unit implant-supported distal cantilever fixed partial denture: a three-dimensional finite-element analysis[J]. Indian J Dent Res, 2012, 23(2):129-134.
  • 7Malhotra AO, Padmanabhan TV, Mohamed K, et al. Load transfer in tilted implants with varying cantilever lengths in an all-on-four situation[J]. Aust Dent J, 2012(57):440- 445.
  • 8Chen L, Guo X, Li Y, et al. Finite element analysis for in- terracial stress and fatigue behaviors of biomimetic titanium implant under static and dynamic loading conditions[J]. J Central South University:Medical Science, 2010, 35(7):662- 672.
  • 9Carl E. Contemporary implant dentistry[M]. 3rd ed. St. Louis: Mosby, 2008:68-129.
  • 10Anitua E, Tapia R, Luzuriaga F. Influence of implant length, diameter, and geometry on stress distribution: a finite ele- ment analysis[J]. Int J Periodontics Restorative Dent, 2010, 30(1):89-95.

二级参考文献30

  • 1潘燕环,马达,王璠,唐亮.牙周膜动力分析的几个问题[J].实用口腔医学杂志,2004,20(6):661-664. 被引量:13
  • 2邹敬才,唐文杰,肖光裕,刘宝材.种植牙受力角度对骨界面应力分布的影响[J].口腔医学,1996,16(2):67-68. 被引量:7
  • 3王惠芸,陈一怀,刘继光,钱宗才,齐春.生理咬合接触点的计算机图像分析[J].实用口腔医学杂志,1997,13(1):37-40. 被引量:15
  • 4Awadalla HA, Azarbal M, Ismail YH, et al. Three-dimensional finite element stress analysis of a cantilever fixed partial denture. J Prosthet Dent, 1992, 68(2) : 243-248.
  • 5Wang CH, Lee HE, Wang CC, et al. Methods to improve a periodontally involved terminal abutment of a cantilever fixed partial denture: a finite element stress analysis. J Oral Rehabil, 1998, 25(4) : 253-257.
  • 6Romeed SA, Fok SL, Wilson NH. Finite element analysis of fixed partial denture replacement. J Oral Rehabil, 2004, 31 ( 12 ) : 1208-1217.
  • 7Romeed SA, Fok SL, Wilson NH. Biomechanics of cantilever fixed partial dentures in shortened dental arch therapy. J Prosthodont, 2004, 13(2) : 90-100.
  • 8Toparli M, Aykul H, Aksoy T. Stress distribution associated with loaded acrylic-metal-cement crowns by using finite element method. J Oral Rehabil, 2002, 29(11) : 1108-1114.
  • 9Meijer HJ, Kuiper JH, Starmans FJ, et al. Stress distribution around dental implants: influence of superstructure, length of implants, and height of mandible. J Prosthet Dent, 1992, 68(1): 96-102.
  • 10Robert GG,John MP.牙科修复材料学.赵信义,易超,译.西安:世界图书出版西安公司,2006:43.

共引文献27

同被引文献169

引证文献16

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部