期刊文献+

SAR海冰的三维区域MRF图像分割 被引量:14

Three-dimensional region-level MRF image segmentation of SAR sea ice
下载PDF
导出
摘要 SAR海冰图像分割对气候变化研究和航行安全保障具有重要意义。现有MRF分割算法仅能利用到单个极化SAR图像中的信息,易受相干斑噪声和地物信息不全面性的影响,不能准确有效地完成分割。为此,在充分利用单个极化SAR图像相邻区域之间的相似性的基础上,进一步融入多个极化SAR图像相同区域之间的一致性,由此提出了一种三维区域MRF(3DRMRF)的SAR海冰图像分割算法,能够实现SAR海冰图像的准确分割。通过RADARSAT-2和SIR-C获得的单视全极化SAR海冰图像的实验结果表明:和其他较先进的算法相比,所提出的算法优势明显,特别是具有更高的分割精度。 SAR sea ice image segmentation plays an important role in climate-change study and navigation safety. Ex- isting MRF segmentation algorithm can only use the information of single-polarized SAR image, and is easily affected by the interfering speckle noise and deficiency of feature information;and can not complete segmentation accurately and effectively. Aiming at this problem, on the basis of sufficiently using the similarity of adjacent regions in single- polarized SAR image, the consistency of the same regions in different polarized SAR images is introduced, and then a new sea ice image segmentation algorithm, called three-dimensional region-level MRF (3D-RMRF), is proposed, which can achieve the accurate segmentation of the SAR sea ice images. The experiment results of acquiring the sin- gle-look full polarimetric SAR sea ice images using RADARSAT-2 and SIR-C indicate that compared with other ad- vanced algorithms, the proposed new algorithm has obvious superiority, especially has higher segmentation accuracy.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第11期2551-2557,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(41076120,61271381,61102154) 中央高校基本科研业务费专项资金(2012HGCX0001)资助项目
关键词 计算机应用 海冰 合成孔径雷达 图像分割 马尔可夫随机场 computer application sea ice synthetic aperture radar(SAR) image segmentation Markov random field(MRF)
  • 相关文献

参考文献20

  • 1ROTHROCK D,YU Y,MAYKUT G.Thinning of the arctic sea-ice cover[J].Geophysical Research Letters,2000,26 (23):3469-3472.
  • 2YANG X Z,CLAUSI D A.Evaluating SAR sea ice image segmentation using edge-preserving region-based MRFs[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5 (5):1383-1393.
  • 3杨学志,沈晶.基于区域MRF的SAR图像快速分割算法[J].工程图学学报,2009,30(6):98-106. 被引量:7
  • 4HAVERCAMP D,SOH L K,TSATSOULIS C.A dynamic local thresholding technique for sea ice classification[C].IEEE International Conference on Geoscience and Remote Sensing Symposium,Tokyo,Japan,1993:638-640.
  • 5CLAUSI D A,YUE B.Comparing co-occurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(1):215-228.
  • 6SOH L K,TSATSOULIS C,GINERIS D,et al.ARKTOS:An intelligent system for SAR sea ice image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(1):229-248.
  • 7YU Q,CLAUSI D A.Combine local and global features for image segmentation using iterative classification and region merging[C].The 2nd Canadian Conference on Computer and Robot Vision,Canada,2005:579-586.
  • 8DENG H,CLAUSI D A.Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43 (3):528-538.
  • 9MAILLARD P,CLAUSI D A,DENG H.Operational mapguided classification of SAR sea ice imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43 (2):2940-2951.
  • 10YANG W,HE C,CAO Y,et al.Improved classification of SAR sea ice imagery based on segmentation[C].IEEE International Conference on Geoscience and Remote Sensing Symposium,Denver,USA,2006:3727-3730.

二级参考文献29

  • 1高芳琴,吴健平.遥感图像识别中线性地物提取方法研究[J].仪器仪表学报,2004,25(z1):653-656. 被引量:4
  • 2朱长青,王耀革,马秋禾,史文中.基于形态分割的高分辨率遥感影像道路提取[J].测绘学报,2004,33(4):347-351. 被引量:77
  • 3薛耿剑,王毅,赵海涛,魏梦琦,郝重阳.一种改进的模糊核聚类算法[J].中国医学影像技术,2005,21(10):1609-1611. 被引量:12
  • 4冯林,管慧娟,孙焘,滕弘飞.基于分水岭变换和核聚类算法的图像分割[J].大连理工大学学报,2006,46(6):851-856. 被引量:6
  • 5BRYANT T G, MORSE G B, NOVAKLM, et al. Tactical radars for ground surveillance [J]. The Linco n Labo ra to ry Jou rna l, 2000, 12(2): 341-354.
  • 6Bovik A C. On detecting edge in speckle imagery [J]. IEEE Trans. on Acoustic Speech and Signal Processing, 1988, 36(10): 1618-1627.
  • 7Soh L K, Tsatsoulis C. Unsupervised segmentation of ERS and RADARSAT sea ice images using multiresolution peak detection and aggregated population equalization [J]. Int. J. Remote Sensing, 1999, 20(15-16): 3087-3109.
  • 8Soh L K, Tsatsoulis C, Gineris D, et al. ARKTOS: An intelligent system for SAR sea ice image classification [J]. IEEE Trans. Geosci Remote Sensing, 2004, 42(1): 229-248.
  • 9Yu Q, Clausi D A. Filament preserving segmentation for SAR sea ice imagery using a new statistical model [J]. IEEE Trans. Geosci Remote Sensing, 2006, 44(12): 3678-3684.
  • 10Li S Z. Markov random field modeling in computer vision [M]. New York: Springer, 2001. 346-378.

共引文献23

同被引文献193

  • 1靳国旺,徐青,何钰.机载双天线干涉SAR图像的自动匹配[J].仪器仪表学报,2006,27(z1):794-795. 被引量:7
  • 2周春霞,鄂栋臣,廖明生.InSAR用于南极测图的可行性研究[J].武汉大学学报(信息科学版),2004,29(7):619-623. 被引量:22
  • 3曹梅盛,晋锐.遥感技术监测海冰密集度[J].遥感技术与应用,2006,21(3):259-264. 被引量:14
  • 4王一达,沈熙玲,谢炯.遥感图像分类方法综述[J].遥感信息,2006,28(5):67-71. 被引量:33
  • 5李小鹏,严严,章毓晋.若干背景建模方法的分析和比较[C].第十三届全国图象图形学学术会议,2006:482-486.
  • 6WANG Y,LIU A.A hierarchical ship detection scheme for high-resolution SAR images[J].IEEE Trans.Geosci.Remote Sens,2012,50(10):4173-4184.
  • 7AMOON M,BOZORGI A,REZAI-RAD G.New method for ship detection in synthetic aperture radar imagery based on the human visual attention system[J].J.App.Remote Sens,2013,7(1):071599.
  • 8GAO G,LIU L,ZHAO L,et al.An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J].IEEE Trans.Geosci.Remote Sens,2009,47 (6):1685-1697.
  • 9LIAO M,WANG C,WANG Y,et al.Using SAR images to detect ships from sea clutter[J].IEEEGeosci.Remote Sens.Lett,2008,5 (2):194-198.
  • 10TELLO M,LéPEZ-MARTINEZ C.A novel algorithm for ship detection in sAR imagery based on the wavelet transform[J].IEEE Geosci.Remote Sens.Lett,2005,2 (2):201-205.

引证文献14

二级引证文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部