期刊文献+

基于非线性可鉴别的稀疏表示视频语义分析方法 被引量:3

Video semantics analysis based on nonlinear identifiable sparse representation
下载PDF
导出
摘要 为了提高视频语义分析的准确性,提出一种基于非线性可鉴别的稀疏表示视频语义分析方法.该方法在K-SVD稀疏表示字典优化算法中引入了核函数和类别矢量,将稀疏表示特征映射到高维空间并使之满足类内离散度小、类间离散度大的Fisher准则,建立了可鉴别模型.使用该模型对字典的优化求解产生约束,形成了优化字典.将该字典用于求解视频特征的稀疏表示,同时提出了视频特征稀疏表示的分类鉴别准则来分析视频语义.在TRECVID 2007的新闻视频库上进行了视频语义概念分析.试验结果表明,该方法显著提高了视频特征稀疏表示的鉴别性,从而提高了视频语义分析准确性. In order to improve the accuracy of the video semantic analysis,the video semantic analysis was proposed based on nonlinear identifiable sparse representation.Kernel function and category vector were introduced into the K-SVD dictionary optimization for the sparse representation.The sparse representation features were mapped into a high dimensional space to establish label identifiable model by Fisher criterion.An optimization dictionary was generated according to the constraint of the proposed model.The sparse representation codes of the video features were calculated by the dictionary.An identification criterion was proposed for the classification of the video sparse representation features to analyze the video semantic by the criterion.The video semantic concept was analyzed in the news video library of TRECVID 2007.The experimental results show that the discriminability of the sparse representation of video features can be markedly improved with improved accuracy of video semantic analysis.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期669-674,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61170126)
关键词 语义分析 视频语义 稀疏表示 可鉴别 核函数 K-SVD semantic analysis video semantics sparse representation identifiable kernel function K-SVD
  • 相关文献

参考文献2

二级参考文献37

  • 1王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 2Geetha P,Narayanan V.A survey of content-based vi-deo retrieval[J].Journal of Computer Science,2008,4(6):474-486.
  • 3Truong B T,Venkatesh S.Video abstraction:a syste-matic review and classification[J].ACM Transactionson Multimedia Computing,Communications and Applica-tions,2007,doi:10.1145/1198302.1198305.
  • 4Ciocca G,Schettini R.An innovative algorithm for keyframe extraction in video summarization[J].Journal ofReal-Time Image Processing,2006,1(1):69-88.
  • 5Zhuang Y T,Rui Y,Huang T S,et al.Adaptive key-frame extraction using unsupervised clustering[C]∥Proceedings of the 1998 IEEE International Conferenceon Image Processing.Los Alamitos:IEEE Comp Soc,1998:866-870.
  • 6Man Hua,Peng Jiang.A feature weighed clusteringbased key-frames extraction method[C]∥Proceedings ofthe 2009 International Forum on Information Technologyand Applications.Piscataway:IEEE Computer Society,2009:69-72.
  • 7Liu Dianting,Shu Meiling,Chen Chao,et al.Integra-tion of global and local information in videos for keyframe extraction[C]∥Proceedings of 2010 IEEE Inter-national Conference on Information Reuse and Integra-tion.Piscataway:IEEE Computer Society,2010:171-176.
  • 8Tian Xiang,Yang Haidong,Deng Feiqi.A novel artifi-cial immune network algorithm[C]∥Proceedings of the2006 International Conference on Machine Learning andCybernetics.Piscataway:IEEE Computer Society,2006:2159-2165.
  • 9Li Xianhui,Zhan Yongzhao,Ke Jia,et al.Shot retrie-val based on fuzzy evolutionary ainet and hybrid features[J].Computers in Human Behavior,2011,27(5):1571-1578.
  • 10Graaff A J,Engelbrecht A P.A local network neighbor-hood artificial immune system for data clustering[C]∥Proceedings of the 2007 IEEE Congress on EvolutionaryComputation.Piscataway:IEEE,2007:260-267.

共引文献15

同被引文献33

  • 1Inoue N,Shinoda K.A fast and accurate video semantic indexing system using fast MAP adaptation and GMM super vectors [J].IEEE Transactions on Multimedia,2012,14(4):1196-1205.
  • 2Xu G,Ma Y F,Zhang H J,et al.An HMM based framework for video semantic analysis [J].IEEE Transactions on Circuits and Systems for Video Technology,2005,15(11):1422-1433.
  • 3Lin L,Shyu M L,Ravitz G,et al.Video semantic concept detection via associative classification [C]//Proceedings of IEEE International Conference on Multimedia and Expo.Los Alamitos:IEEE Computer Society Press,2009:418-421.
  • 4Cong Y,Yuan J S,Liu J.Abnormal event detection in crowded scenes using sparse representation[J].Pattern Recognition,2012,46(7):1851-1864.
  • 5Jia X,Lu H C,Yang M H.Visual tracking via adaptive structural local sparse appearance model [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2012:1822-1829.
  • 6Bai T X,Li Y F.Robust visual tracking with structured sparse representation appearance model [J].Pattern Recognition,2011,45(6):2390-2404.
  • 7Martins A F T,Smith N A,Aguiar P M Q,et al.Structured sparsity in structured prediction [C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.East Stroudsburg:Association for Computational Linguistics Press,2011:1500-1511.
  • 8Huang J Z,Zhang T,Metaxas D.Learning with structured sparsity [C]//Proceedings of the 26th International Conference on Machine Learning.Madison:Omnipress,2009:417-424.
  • 9Elhamifar E,Vidal R.Robust classification using structured sparse representation [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2011:1873-1879.
  • 10Mairal J,Bach F,Ponce J,et al.Discriminative learned dictionaries for local image analysis [C]//Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2008:Article No.4587652.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部