期刊文献+

多特征联合建模的视频对象分割技术研究 被引量:7

Video Object Segmentation Research Based on Features Joint Modeling
下载PDF
导出
摘要 当前很多视频对象分割方法都联合利用了多种特征进行前景提取,但是这些特征都是通过简单加权融合到一起的.该文通过主成分分析法(Principal Component Analysis,PCA)比较准确地衡量了各特征在前景检测中所占的权重,使其有效指导前景分割.同时通过对各特征建立相应的高斯模型,有效提高了前景分割的质量,最后再通过基于颜色不变量的阴影检测算法得到了比较准确的结果.实验中采用了颜色(RGB)和局部二值模式(Local Binary Pattern,LBP)4种特征,结果表明:无论是对于静态场景还是动态场景,该算法都具有良好的分割效果. Now there are many video object segmentation methods combined using many fea- tures. However, these features are fused together through the sample weighted. We measured every feature's weight by the foreground detection, make it effective for foreground segmenta- tion. Additionally, Gaussian model is built for each feature, which improved the quality of seg- mentation effectively. Then more accurate results are obtained with the shadow detection method based on the invariant color features. We use the RGB color features and local binary pattern (LBP) in our experiment. Experiments on videos demonstrate the efficiency of our proposed method.
出处 《计算机学报》 EI CSCD 北大核心 2013年第11期2356-2363,共8页 Chinese Journal of Computers
基金 国家自然科学基金(61379106) 山东省自然科学基金(ZR2009GL014) 山东省中青年科学家奖励基金(BS2010DX037) 国家文化部科技创新基金(46-2010) 中央高校基本科研基金(09CX04044A 10CX04043A 10CX04014B)资助~~
关键词 主成分分析 颜色 局部二值模式 高斯模型 颜色不变量 principal component analysis RGB local binary pattern Gaussian model invariantcolor features
  • 相关文献

参考文献28

  • 1Wixson L, et al. Detecting salient motion by accumulating directionally-consistent flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 774-780.
  • 2Karm ann K P, Moving object recognition using an adaptive background memory. The Netherlands: Elsevier Science Publishers, 1990: 289-307.
  • 3Friedman N, Russell S J. Image Segmentation in Video Sequences Approach: A Probabilistic approach//Proceedings of the Uncertainty in Artificial Intelligence UAI. Colorado, USA, 1997:175-181.
  • 4Fragkiadaki K, Shi Jian-Bo. Detection free tracking: Exploi- ting motion and topology for segmenting and tracking under cntanglement//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Colorado. USA, 2011:2073-2080.
  • 5Li Zong-Min, Zhong Liang-Liang, Liu Yu-Jie. Efficient fore- ground layer exlraetion in video//Proeeedings of the IEEE Pacific Rim Conference on Muhimedia Conference. Shanghai, China, 2010, 6297:319-329.
  • 6Collins R, Lipton A J, Kanade T, et al. A system for video surveillance and monitoring. Technical Report= CMURI-TR- 00112, Carnegie Melon University, Pittsburgh, Peen, America, 2000:1-68.
  • 7Elias Herrero-Jaraba, et al. Detected motion classification with a double-background and a Neighborhood based differ ence. Patern Recognition Letters, 2003, 24(12) : 2079 -2092.
  • 8Joaquin S, Hugo J-H. A double layer background model to detect unusual events//Proceedings of the Advanced Con- cepls for Intelligent Vision Systems-AClVS. Las Vegas, USA, 2007:406-416.
  • 9Arnell F, Petersson L. Fast object segmentation from a moving camera//Proceedings of the Intelligent Vehicles Symposium. Las Vegas, USA, 2005:136-141.
  • 10Yang Chang Jiang, Duraiswami R, DcMcnthon D. Mean- shift analysis using quasi-newton methods//Proceedings of the IEEE International Conference on Image Processing. Barcelona, Spain, 2003:447-450.

同被引文献32

  • 1田元,王乘,管涛.基于FCM和图割的交互式图像分割方法[J].工程图学学报,2010,31(2):123-127. 被引量:3
  • 2王丹,张祥合.基于HOG和SVM的人体行为仿生识别方法[J].吉林大学学报(工学版),2013,43(S1):489-492. 被引量:9
  • 3李小和,张太镒,周亚同,沈晓东.基于高斯混合模型的视频对象分割算法[J].西安交通大学学报,2006,40(6):724-728. 被引量:2
  • 4Fu J C, Chen C C, Chai J W, et al. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging[J]. Computerized Medical Imaging and Graphics, 2010, 34(4): 308-320.
  • 5Lu Q, Huang X, Zhang L. A Novel Clustering-Based Feature Representation for the Classification of Hyperspectral Imagery lJ]. Remote Sensing, 2014, 6(6): 5732-5753.
  • 6Cardoso M J, Clarkson M J, Ridgway G R, et al. LoAd: a locally adaptive cortical segmentation algorithm[J].Neurolmage 2011, 56(3): 1386-1397.
  • 7Dalmiya S, Dasgupta A, Datta S K. Application of Wavelet based K-means Algorithm in Mammogram Segmentation[J] International Journal of Computer Applications, 2012, 52(15) 15-19.
  • 8Velasco-Forero S, Angulo J. Supervised ordering in: Application to morphological processing of hyperspectral images[J]. Image Processing, IEEE Transactions on, 2011 20(11): 3301-3308.
  • 9Yao H, Duan Q, Li D, et al. An improved K-means clustering algorithm for fish image segmentation[J]. Mathematical and Computer Modelling, 2013, 58(3): 790-798.
  • 10Lucchi A, Smith K, Achanta R, et al. Supervoxel-based segmentation of rnitochondria in era image stacks with learned shape features[J]. Medical Imaging, IEEE Transactions on, 2012, 31(2): 474-486.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部