期刊文献+

基于Gabor小波和ASIFT特征点的人耳识别 被引量:1

EAR RECOGNITION BASED ON GABOR WAVELET AND ASIFT FEATURE POINTS
下载PDF
导出
摘要 针对人耳识别中对于采集角度和光照变化等条件下识别率不高的问题,提出一种基于Gabor小波和仿射尺度不变特征变换ASIFT(Affine Scale-invariant feature transform)的人耳识别方法。首先利用Gabor小波提取图像的整体特征,ASIFT提取图像特征点的局部特征,然后将整体特征与点特征联合识别,在北京科技大学提供的人耳图像库USTBⅡ中进行实验,识别率达到93%。并与其他主流人耳识别方法进行了对比实验。实验结果表明,采用基于Gabor小波和仿射尺度不变特征变换算法进行人耳图像的识别,具有较高的识别率和稳定性。 In order to solve the problem of low recognition rate in ear recognition under the conditions of the changes in acquisition angle and illumination, a new ear recognition method based on Gabor wavelet and ASIFT (affine scale-invariant feature transform) is proposed. First, Gabor wavelet is used to extract the overall features of the image, and ASIFT for extracting the local feature of image' s feature points ; then the overall feature and the point features are combined together for recognition. Experiments are carried out on ear image library USTB database H of Beijing University of Science and Technology, the recognition rate reaches 93%. Contrastive experiment with other mainstream ear recognition method is also conducted, the experimental results show that it can obtain a high recognition rate and stability by using the Gabor wavelet and ASIFT algorithm to recognise the ear image.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第11期202-205,共4页 Computer Applications and Software
基金 辽宁省教育厅科学研究项目(L2010194)
关键词 人耳识别 GABOR小波 仿射尺度不变特征变换 Ear recognition ,Gabor wavelet ,ASIFT
  • 相关文献

参考文献13

  • 1Burge M ,Burger W. Ear Biometrics for Machine Vision[ C]. 21 st Workshop of the Austrian Assciation for Pattern Recognition, 1997:275- 282.
  • 2Lowe D G. Object recognition from local scale-invariant features. Inter- national Conference on Computer Vision [ C ]. Corfu, Greece, Sep 1999 : 1150- 1157.
  • 3I_owe D G. Distinctive image features from scale-invarimlt key Foints[ J]. International Journal of Computer Vision ,2004,60(2) :91 - 110.
  • 4Bustard J D,Nixon M S. Robust 2D Ear Registration and Recognition Based on SIFF Point Matching[ C]//2th IEEE International Confer- ence on Biometrics : Theory. Applications and Systems,2008 : 1 - 6.
  • 5Morel J, Yu G. ASIFF:A new framework for fully affine invariant image comparison [ J ]. SIAM Journal on Imaging Sciences,2009,2 ( 2 ).
  • 6雷松泽,齐敏,王毅,郝重阳.结合Gabor小波和监督保局投影的人耳识别[J].计算机辅助设计与图形学学报,2010,22(8):1259-1265. 被引量:6
  • 7Akyilmaz. Total least squares solution of coordinate transformation [ J ]. Survey Review,2007,39(303) :68 80.
  • 8郭英起,黄声享,曹先革.基于稳健估计的高精度坐标转换参数解算方法[J].测绘工程,2008,17(6):6-8. 被引量:14
  • 9Lee T S. Image representation using 2D Gabor wavelets [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (10) :59-971.
  • 10Lee C J, Wang S D. Fingerprint feature extraction using Gabor filters [ J ]. Electronics Letters, 1999,35 ( 4 ) : 288 - 290.

二级参考文献31

  • 1黄声享.GPS测量控制网公共点兼容性分析[J].武测科技,1996(2):1-6. 被引量:16
  • 2KOCH K R, YANG YUANXI. Robust kalman filter for rank deficient observation model[J]. Journal of Geodesy, 1998,72(8) : 189-192.
  • 3[2]IANNARELLI A.Ear identification[M].Fremont:Paramount Publishing Company,1989.
  • 4[3]MORENO B,A(A)NCHEZ (A),V(E)LEZ J.Use outer ear images for personal identification in security applications[C]// Proceedings of IEEE 33rd Annual International Carnahan Conference on Security Technology.Madrid,Spain,1999.
  • 5[4]BURGE M,BURGE W.Ear biometrics in computer vision[C]//Proceedings of the 15th International Conference of Pattern Recognition.Barcelona,Spain,2000.
  • 6[5]HURLEY J,NIXON M,CARTER N.Force field energy functions for image feature extraction[J].Image and Vision Computing,2002,20(5-6):311-317.
  • 7[6]HURLEY D,NIXON M,CARTER J.A new force field transform for ear and face recognition[C]// Proceedings of the IEEE International Conference on Image Processing.Vancover,Canada,2000.
  • 8[7]刘炜杰.外耳图像识别研究[M].北京:北京科技大学出版社,2002.
  • 9[8]CHANG K,BOWYER K W,SARKAR S,VICTOR B.Comparison and combination of ear and face images in appearance-based biometrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9):1160-1166.
  • 10[10]ZHANG Haijun,MU Zhichun,QU Wei,LIU Leiming,ZHANG Chengyang.A novel approach for ear recognition based on ICA and RBF network[C]// Proceedings of 2005 International Conference on Machine Learning and Cybernetics.Guangzhou,China,2005.

共引文献22

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部