期刊文献+

改进误差反向传播(BP)神经网络在图像压缩中的应用 被引量:4

Image compression used improved error back-propagation neural network
下载PDF
导出
摘要 针对空间遥感图像数据量剧增的问题,提出一种改进的BP神经网络图像压缩方法。该算法利用Levenberg-Marquart算法提高神经网络的收敛速度,利用α算法提高神经网络的泛化能力。比较分析了新算法和标准BP算法对同一幅图像进行压缩的结果和性能误差函数。实验结果表明,实验结果表明,标准BP算法在图像压缩比为1/2时,均方误差(MSE)为343.3750;改进后的BP算法在图像压缩比为1/16时,MSE为69.5796,图像压缩比为1/8时,MSE为20.9561,图像压缩比为1/4时,MSE为5.5123。并且利用改进后的算法压缩图像的峰值信噪比均在30dB^40dB之间。改进算法已用于实际工程中,满足实际需求。 To overcome the dramatically increasing data amount of space remote sensing image, an improved back-propagation(BP) neural network was put forward to compress it. The algo- rithm used the Levenberg-Marquart algorithm to improve the convergence speed of neural net- work and used a algorithm to improve the generalization ability of neural network. We com- pared and analyzed the compression result and error performance function of the improved algo- rithm and the standard BP algorithm to the same image. The experimental results show that, when the image compression ratio is 1/2, the mean square error (MSE) of standard BP algo- rithm is 343. 3750; for improved BP algorithm, the MSE is 69. 5796 when the image compres- sion ratio is 1/16, the MSE is 20. 9561 when the image compression ratio is 1/8, and the MSE is 5. 5123 when the ratio is 1/4. Moreover, the peak signal-to-noise ratio (PSNR) of the im- proved algorithm is always in the range from 30 dB to 40 dB. The improved algorithm has been applied in practical engineering, which meets the need of practical work.
作者 李季
出处 《应用光学》 CAS CSCD 北大核心 2013年第6期974-979,共6页 Journal of Applied Optics
基金 中国科学院二期创新基本资助项目(C05T022)
关键词 BP神经网络 图像压缩 空间遥感图像 Levenberg—Marquart算法 a算法 BP neural network image compression space remote sensing image Levenberg- Marquart algorithm a algorithm
  • 相关文献

参考文献11

二级参考文献55

共引文献45

同被引文献50

  • 1邓雪刚,王嘉,赵壤,黎艺,龚彬.大型电子政务应用系统负载均衡的设计与实现[J].云南大学学报(自然科学版),2013,35(S2):233-236. 被引量:3
  • 2陈忠,赵忠明.基于区域生长的多尺度遥感图像分割算法[J].计算机工程与应用,2005,41(35):7-9. 被引量:26
  • 3袁玉萍,陈庆华,汪洪艳.关于支持向量机VC维问题证明的研究[J].农业与技术,2006,26(3):210-211. 被引量:4
  • 4邱道尹,张红涛,刘新宇,刘彦楠.基于机器视觉的大田害虫检测系统[J].农业机械学报,2007,38(1):120-122. 被引量:33
  • 5Kumar S, Loui A C, Hebert M. An observation- constrained generative approach for probabilistic classification of image regions [J]. Image and Vision Computing, 2003, 21 (1) : 87-97.
  • 6Hart S, Han Y, Hahn H. Vehicle detection method using Haar-like feature on real time system [J]. WorldAcademy of Science, Engineering and Technology, 2009, 59: 455-459.
  • 7Kalinke T, Tzomakas C, von Seelen W. A texture- based object detection and an adaptive model- based classification [C]. Citeseer, 1998.
  • 8Bertozzi M, Broggi A, Castelluccio S. A real-time oriented system for vehicle detection [J]. Journal of Systems Architecture, 1997, 43 (I) : 317-325.
  • 9Dumais S, Platt J, Heckerman D, et al. Inductive learning algorithms and representations for text categorization [C]. ACM, 1998.
  • 10Chang C, Lin C. LIBSVM: A library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2 (3) : 27.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部