期刊文献+

DeweyTP:一种面向概率XML数据的编码方案 被引量:2

DeweyTP:a labeling scheme for probabilistic XML data
下载PDF
导出
摘要 与普通XML文档相比,概率XML数据中节点的类型不唯一且节点的出现具有相应的概率。提出一种高效的编码策略DeweyTP,该编码策略为每个XML数据节点分配唯一的能够体现节点类型和路径概率的编码,来支持节点类型检测和路径概率提取,因而提升系统性能。最后通过实验从时间和空间两方面验证了DeweyTP编码的高效性。 Compared with ordinary XML documents, nodes in the probabilistic XML documents have two characteristics, the type of nodes was non-unique and the nodes exist with a corresponding probability. As an efficient labeling scheme, DeweyTP was proposed to assign each node a uniqtte label, which contains the type and path probability of nodes, supporting the detection of node type and the extraction of path probability, and thus improves the system performance. Finally, experimentally evaluated DeweyTP encoding scheme were experimentally evaluated in aspects of time and space efficiency.
出处 《通信学报》 EI CSCD 北大核心 2013年第11期26-32,共7页 Journal on Communications
基金 国家自然科学基金资助项目(61272124 61103139 61073060)~~
关键词 概率XML文档 DeweyTP编码 编码方案 DEWEY编码 probabilistic XML document DeweyTP encode labeling scheme Dewey encode
  • 相关文献

参考文献13

  • 1SENELLART P, ABITEBOUL S. On the complexity of managing probabilistic XML data[A]. The 28th ACM SIGACT-SIGMOD- SIGART Symposium on Principles of Database Systems[C]. 2007.283-292.
  • 2NIERMAN A, JAGADISH H V. ProTDB: probabilistic data in XML[A]. The 28th International Conference on Very Large Data Bases[C]. 2002. 646-657.
  • 3HUNG E, GETOOR L, SUBRAHMANIAN V S. Pxml: a probabilistic semistructured data model and algebra[A]. The 19th International Conference on Data Engineering[C]. 2003. 467-478.
  • 4KEULEN M V, KEIJZER A D, ALINK W. A probabilistic XML approach to data integration[A]. The 21st International Conference on Data Engineering[C]. 2005. 459-470.
  • 5ABITEBOUL S, KIMELFELD B, SAGIV Y, et al. On the expressiveness of probabilistic XML models[J]. The International Journal on Very Large Data Bases, 2009, 18(5):1041-1064.
  • 6KIMELFELD B, KOSHAROVSKY Y, SAGIV Y. Query efficiency in probabilistic XML models[A]. The ACM SIGMOD International Conference on Management of Data[C]. 2008. 701-714.
  • 7ABITEBOUL S, ALSTRUP S, KAPLAN H, et al. Compact labeling scheme for ancestor queries[J]. SIAM J Comput 2006, 35(6): 1295-1309.
  • 8COHEN E, KAPLAN H, MILO T. Labeling dynamic XML trees[A]. The Symposium on Principles of Database Systems[C]. 2002. 271-281.
  • 9TATARINOV I, VIGLAS S, BEYER K S, et al. Storing and querying ordered XML using a relational database system[A]. The ACM SIGMOD International Conference on Management of data[C]. 2002.204-215.
  • 10LI J X, LIU C F, ZHOU R, et al. Top-k keyword search over probabilistic XML data[A]. The 27th International Conference on Data Engineering[C]. 2011.673-684.

同被引文献29

  • 1李阳阳,王洪波,张鹏,董健康,程时端.基于多属性信息的数据中心间数据传输调度方法[J].通信学报,2012,33(S1):121-131. 被引量:7
  • 2张惟皎,刘春煌,尹晓峰.蚁群算法在数据挖掘中的应用研究[J].计算机工程与应用,2004,40(28):171-173. 被引量:34
  • 3罗道锋,孟小峰,蒋瑜.XML数据扩展前序编码的更新方法[J].软件学报,2005,16(5):810-818. 被引量:20
  • 4陈细谦,王占昌,曹秀坤,迟忠先.一种有效的空间数据仓库区域聚集查询索引结构[J].计算机研究与发展,2006,43(1):75-80. 被引量:2
  • 5D Liu.A macro-evolutionary multi-objective immune algorithm with application to optimal allocation of water resources in Dongjiang River basins,South China[J].Stochastic Environmental Research and Risk Assessment,2012,26 (4):491-507.
  • 6Y Jiang,J Jiang,Y Zhang.A Novel Fuzzy Multiobjective Model Using Adaptive Genetic Algorithm Based on Cloud Theory for Service Restoration of Shipboard Power Systems[J].IEEE Transactions on Power Systems,2012,27(2):612-620.
  • 7J Pei,J Han,B Mortazavi-Asl,et al.Mining Sequential Patterns by Pattern-Growth:The Prefix Span Approach[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(11):1424-1440.
  • 8N D Thuan.Mining Cyclic Association Rules in Temporal Database[J].The Journal Science and Technology Development,2004,(7):12-19.
  • 9Tatarinov S,Viglas D,Beyer K J,et al.Storing and Querying Or-dered XML Using a Relational Database System[C]∥Proc of the ACM SIGMOD 2002.Los Alamitos,CA:IEEE Computer Society,2002:204-215.
  • 10Li Q,Moon B.Indexing and Querying XML Data for Regular Path Expressions[C]∥Proc of the 27th Intl Conf Very Large Data Bases (VLDB).New York:ACM,2001:361-370.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部