期刊文献+

隐私保护的一站多表跨多表频繁项集挖掘 被引量:1

One-site multi-table and cross multi-table frequent item sets mining with privacy preserving
下载PDF
导出
摘要 从多方合作挖掘分布存储在不同计算站点上多个数据库表而不泄露各方原始数据信息的目的出发,对于每个站点拥有多个数据表的分布式计算环境,基于三方安全协议,运用生成随机数扰乱方法,采取各站点并行挖掘频繁项集,将站点间各表数据公共连接属性作等值连接,以安全协议计算全局站间跨表频繁项集支持数的策略,提出了一站多表的3站点跨多表频繁项集挖掘隐私保护算法。实验结果表明,该算法在高效地联合挖掘出跨多表频繁项集的同时保护了各站点的敏感信息。 To achieve the goal that personal and original information is not disclosed to each other when several parties cooperatively mine several data tables at different computational sites, based on secure triple-party protocol, a triple-site cross multi-table frequent item sets mining algorithm with privacy preserving was proposed in distributed environment with multiple tables at each site. The proposed algorithm disturbed data by generating random numbers, mined frequent item sets of inter- site in parallel, and linked the data with equal-value by common link attribution of the tables among the sites and applied secure protocol to compute the global support of inter-site cross-table frequent item sets. The experimental results show that the proposed algorithm is efficient, and it can not only mine the cross multi-table frequent item sets, but also preserve the private data at each site.
出处 《计算机应用》 CSCD 北大核心 2013年第12期3437-3440,共4页 journal of Computer Applications
基金 广西自然科学基金资助项目(2011GXNSFA018152)
关键词 跨表挖掘 频繁项集 并行挖掘 隐私保护 多方安全协议 cross multi-table mining frequent item set parallel mining privacy preserving secure multi-party protocol
  • 相关文献

参考文献15

  • 1VAIDY AJ, CLIFTON C. Privacy preserving association rule mining in vertically partitioned data[C] / / KDD'02: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2002: 639 -644.
  • 2GOETHALS B, LAUR S, LIPMAA H, et al. On private scalar prod?uct computation for privacy-preserving data mining[C] / / ICISC'04: Proceedings of the 7 th Annual International Conference in Information Security and Cryptology, LNCS 3506. Berlin: Springer-Verlag, 2004: 104 -120.
  • 3华蓓,钟诚,黄肇明,杨柳.通过计算影响权值实现敏感序列模式隐藏[J].小型微型计算机系统,2010,31(8):1647-1651. 被引量:3
  • 4GONG Q Y, LUOJ Z, YANG M. AIM: a new privacy preservation algorithm for incomplete microdata based on anatomy[C] / / Pro?ceedings of the 7th International Conference on Pervasive Computing and Applications (ICPCA) and the 4th Symposium on Web Society, LNCS 7719. Berlin: Springer-Verlag, 2013: 194 -208.
  • 5GORAWSKI M,JURECZEK P. Optimization of privacy preserving mechanisms in mining continuous patterns[C] / / Proceedings of the 8 th International Conference on Dependability and Complex Sys?tems, AISC 224. Berlin: Springer- Verlag, 2013: 183 -194.
  • 6贡晓静,钟诚,华蓓.基于等距变换的聚类挖掘敏感信息保护方法[J].计算机工程,2011,37(19):122-125. 被引量:4
  • 7HUA B, ZHONG C, YANG L, et at. Collusion-resistance privacy?preserving distributed sequential pattern mining[J]. InternationalJournal of Advancements in Computing Technology, 2012, 4(21): 204 -212.
  • 8SHE R, WAN G K, FU A W, et at. ComputingJoin aggregates over private tables[C] / / Proceedings of 9th International Conference on Data Warehousing and Knowledge Discovery, LNCS 4654. Berlin: Springer- Verlag, 2007: 78 - 88.
  • 9DU W. A study of several specific secure two-party computation problems[DJ. West Lafayette, Indiana: Purdue University, 2001: 1 -159.
  • 10林瑞,钟诚,李效鲁.隐私保护的跨多表频繁项集挖掘[J].计算机工程与应用,2012,48(2):66-68. 被引量:1

二级参考文献20

  • 1罗文俊,李祥.多方安全矩阵乘积协议及应用[J].计算机学报,2005,28(7):1230-1235. 被引量:34
  • 2黄伟伟,柏文阳.聚类挖掘中隐私保护的几何数据转换方法[J].计算机应用研究,2006,23(6):180-181. 被引量:7
  • 3张国荣,印鉴.应用正交变换保护数据中的隐私信息[J].计算机应用研究,2006,23(10):95-97. 被引量:4
  • 4Oliveira S R M, Zane O R. Achieving Privacy Preservation When Sharing Data for Clustering[C]//Proc. of the International Workshop on Secure Data Management. Toronto, Canada: [s. n.], 2004: 67-82.
  • 5Forina M. Wine Data Set[EB/OL]. (1991-07-01). http://archive. ics.uci.edu/ml/datasets/Wine.
  • 6Muralidhar K, Parsa R, Sarathy R. A General Additive Data Perturbation Method for Database Security[J]. Management Science, 1999, 45(10): 1399-1415.
  • 7Du Wenliang.A study of several specific secure two-party computation problems[D].USA:Purdue University,2001 : 1-159.
  • 8Goldreich O.Secure multi-party computation[Z].Working draft, Version 1.4,1998: 1-109.
  • 9Li Nai-qian, Song Qin-bao,Shen Jun-yi.Mining cross-table association rules based on projections of itemsets[C]//Proc of the First International Conference on Machine Learning and Cybernetics,Beijing,November 2002: 170-174.
  • 10Vaidya J, Clifton C.Privacy preserving association rule mining in vertically partitioned data[C]//Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002: 639-644.

共引文献5

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部