期刊文献+

多通道奇Gabor梯度相关矩阵的角点检测算法

Corner detection algorithm using multi-channel odd Gabor gradient autocorrelation matrix
下载PDF
导出
摘要 为了抑制边缘轮廓平滑导致角点定位精度的下降,提出多通道奇Gabor梯度相关矩阵的角点检测算法。该算法是在Gabor滤波器的基础上,利用8个通道的奇Gabor滤波器对输入图像进行变换;然后利用每个像素与其相邻像素的Gabor梯度相关性构造自相关矩阵,若像素点的自相关矩阵对应的归一化特征值的和是局部极大值,则标记为角点。实验显示,与Harris算法、曲率尺度空间(CSS)算法等经典算法相比,该算法的平均正确检测率提高了约17.74%,平均定位误差降低了约18.15%。结果表明,所提出的算法具有更好的检测性能,并获得了较高的角点检测率及较好的定位精度。 Abstract: A new comer detection algorithm based on the autocorrelation matrix of Multi-channel Odd Gabor grAdient (MOGA) was proposed to suppress the decrease of comer positioning accuracy caused by the smoothed edge. The input image was transformed by 8-channel odd Gabor filter, and then autocolTelation matrices were constructed tot each pixel by Gabor gradient correlation of the pixel and its surrounding pixels. If the sum of the normalized eigenvalues of the pixel was local maxima, the pixel was labeled as a corner. Compared with the classical algorithms, such as Harris and Curvature Scale Space ( CSS), the proposed algorithm increased the average rate of correct detection by 17.74%, and decreased the average rate of positioning error by 18.15%. The experimental results show that the proposed algorithm has very good detection performance, and gets higher corner detection rate and better comer positioning accuracy.
出处 《计算机应用》 CSCD 北大核心 2013年第12期3548-3551,3575,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61005033 61201395 61272394) 河南省高等学校青年骨干教师资助计划项目(2012GGJS-057)
关键词 边缘轮廓平滑 定位精度 角点检测 哈里斯算法 曲率尺度空间算法 edge smoothing positioning accuracy corner detection Harris algorithm Curvature Scale Space (CSS)algorithm
  • 相关文献

参考文献16

二级参考文献79

  • 1洪明坚,张小洪,杨丹.基于B-样条轮廓方向变化率多尺度表示的角点检测[J].计算机应用,2009,29(3):725-728. 被引量:4
  • 2张小洪,雷明,杨丹.基于多尺度曲率乘积的鲁棒图像角点检测[J].中国图象图形学报,2007,12(7):1270-1275. 被引量:21
  • 3Chen C H, Lee J S, Sun Y. Wavelet transformation for gray-level corner detection [ J]. Pattern Recognition, 1995, 28(6) :853-861.
  • 4Quddus A, Gabbouj M. Wavelet-based corner detection technique using optimal scale [ J ]. Pattern Recognition Letters, 2002, 23(1-3) : 215-220.
  • 5Mokhtarian F, Suomela R. Robust image comer detection through curvature scale space [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12) : 1376-1381.
  • 6He X C, Yung N H C, Curvature scale space corner detector with adaptive threshold and dynamic region of support [A]. IEEE Proceedings of the 17th International Conference on Pattern Recognition [C], Cambridge, UK, 2004 : 791-794.
  • 7Cong G, Ma S D. Comer enhancement in curvature scale space [J].Pattern Recognition, 1998, 31 (10) : 1491 - 1501.
  • 8Arrebola F, Sandoval F. Comer detection and curve segmentation by multi-resolution chain-code linking [J]. Pattern Recognition, 2005, 38(10) :1596-1614.
  • 9Chi-Hao Yeh. Wavelet-based corner detection using eigenvectors of covariance matrices [ J ]. Pattern Recognition Letters, 2003, 24( 15 ) : 2797-2806.
  • 10Tsai D M, Hou H T, Su H J. Boundary-based comer detection using eigenvalues of covariance matrices [J]. Pattern Recognition Letters, 1999, 20(1) :31-40.

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部