期刊文献+

基于随机参数的粒子群优化算法 被引量:6

A New Particle Swarm Optimization with Random Parameters
原文传递
导出
摘要 粒子群优化算法本质上是一种全局随机优化技术,优化性能高但容易陷于局部最优,并且算法性能很大程度上依赖于参数设置。本文对该算法的3个控制参数进行数据实验和调查,分析参数设置对算法性能的影响规律,提出一种改进的粒子群优化算法,该算法在迭代的每一代中,惯性权重和加速系数都是在一定范围内随机产生:ω=rand(0.4,0.7),C1=rand(0.5,3.0),C2=rand(1,3.5)。由于该算法的控制参数不再固定取值;而且在一定范围内随机产生,从而增强了算法的多样性和遍历性,能够有效避免算法早熟收敛。通过标准函数的测试,验证了该算法性能优于固定参数粒子群算法和随机加速系数粒子群算法,具有更好的收敛性和稳定性。 Particle swarm optimization (PSO) is a powerful stochastic global technique, but easily trapped into local optimization, and its performance often depends heavily on the parameter settings. Based on analyzing the influence of the parameters setting in the experiment, this paper proposed a new particle swarm optimization algorithm which the inertia weight (ω) and acceleration coef-ficients (c1 and c2 ) are generated as random numbers within a certain range in each iteration process., ω= rand (0.4, 0.7), C1 = rand (0.5, 3.0), c2 = rand (1.0, 3.5). The proposed algorithms apply more particles' information, can easily jump out of local optimum and improve convergence performance. The experimental results demonstrate that the proposed algorithm is superior to the other two algorithms with a better astringency and stability.
作者 黄少荣
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期123-127,共5页 Journal of Chongqing Normal University:Natural Science
基金 广东省自然科学基金(No.101754539192000000)
关键词 粒子群优化算法 惯性权重 加速系数 随机参数 particle swarm optimization (PSO) inertia weight acceleration coefficients random parameters
  • 相关文献

参考文献10

二级参考文献39

  • 1黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策,2006,21(2):175-179. 被引量:41
  • 2冯翔,陈国龙,郭文忠.粒子群优化算法中加速因子的设置与试验分析[J].集美大学学报(自然科学版),2006,11(2):146-151. 被引量:22
  • 3Kennedy J, Eberhart R C.Particle swarm optimization [C]. Proceedings of the IEEE International Conference on Neural Networks, 1995:1942-1948.
  • 4Holland J H. Adaptation in natural and artificial systems [M]. University Michigan Press, 1975.
  • 5Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing,2002,1 (3):235-306.
  • 6Hu X,Eberhart R C.Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proceedings of the IEEE congress on Evolutionary Computation, 2002: 1677-1681.
  • 7Hu X,Eberhart R C.Adaptive particle swarm optimization: detection and response to dynamic system[C]. Proceedings of the IEEE congress on Evolutionary Computation,2002:1666-1670.
  • 8Laskari E C,Parsopoulos K E,Vrahatis M N.Particle swarm optimization for maximum problems[C]. Proceedings of the IEEE Congress on Evolutionary computation, 2002:1582-1587.
  • 9Shi Y, Eberhart R C.A modified particle swarm optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation, 1998:303-308.
  • 10Shi Y, Eberhart R C.Empirical study of particle swarm optimization [C]. Proceedings of the IEEE Congress on Evolutionary Computation, 1999:1945-1950.

共引文献58

同被引文献61

引证文献6

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部