期刊文献+

结合多阈值法的模糊聚类用于SAR图像变化检测 被引量:6

Change detection for SAR images based on fuzzy clustering using multilevel thresholding
下载PDF
导出
摘要 针对模糊局部信息C均值算法运算量较高的问题,提出了一种新的结合多阈值法的模糊聚类算法,并用于合成孔径雷达图像变化检测中的差异图聚类.首先利用多阈值法对差异图进行预分割,得到变化类、非变化类以及待判别类;之后利用模糊局部信息C均值算法对待判别类中的像素点集进行聚类,而在聚类过程中涉及到邻域像素点不属于待判别类时,其隶属度值将取确定值0或1.该方法提高了对合成孔径雷达图像变化检测的精度,且运算量较低.相关的实验结果表明,与模糊C均值算法和模糊局部信息C均值算法相比较,该方法的检测性能更好,而运行时间比模糊局部信息C均值算法的运算时间降低了70%多. A new fuzzy clustering algorithm using multilevel thresholding is proposed to reduce the computational complexity of the fuzzy local information c-means (FLICM) algorithm for solving the clustering problem on the difference image of change detection for SAR images. First, the pixels in the difference image are classified into the "changed" pixels, "unchanged" pixels and unknown status pixels by the multilevel thresholding procedure. Then the unknown status pixels are clustered by the FLICM. If the neighboring pixels in the FLICM are not the unknown status pixels, their degrees of membership are set to 1 or 0. The proposed method improves the precision in the change detection for SAR images with the low computational complexity. Experimental results show that the proposed method has the better performance than fuzzy c-means (FCM) and FLICM algorithms on the change detection for SAR images and that its run time is about 70% less than that of the FLICM algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第6期13-18,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61003199) 中央高校基本科研业务费专项资金资助项目(K50510020015 K5051202019)
关键词 变化检测 合成孔径雷达图像 聚类 分割 粒子群优化 change detection synthetic aperture radar images clustering segmentatlon particle swarmoptimization
  • 相关文献

参考文献12

  • 1Radke R], Andra S, Al-Kofahi 0, et al. Image Change Detection Algorithms: a Systematic Survey[J]. IEEE Transcations on Image Processing, 2005, 14(3): 294-307.
  • 2辛芳芳,焦李成,王桂婷,万红林.利用小波域HMC模型进行遥感图像变化检测[J].西安电子科技大学学报,2012,39(3):43-49. 被引量:10
  • 3FranssonJ E S, Walter F, Blennow K, et al. Detection of Storm-damaged Forested Areas Using Airborne CARABA5-n VHF SAR Image Data[J]. IEEE Transcations on Geoscience and Remote Sensing, 2002, 40 (l 0): 2170-2175.
  • 4李阳阳,吴娜娜,焦李成,尚荣华,刘若辰.基于量子免疫克隆聚类的SAR图像变化检测[J].红外与毫米波学报,2011,30(4):372-376. 被引量:7
  • 5王桂婷,王幼亮,焦李成.基于快速EM算法和模糊融合的多波段遥感影像变化检测[J].红外与毫米波学报,2010,29(5):383-388. 被引量:15
  • 6BezdekJ. Pattern Recognition with Fuzzy Objective Function Algorithmsj M] . New York: Plenum, 1981.
  • 7Krinidis S, Chatzis V. A Robust Fuzzy Local Information c-rneans Clustering Algorithm[J]. IEEE Transcations on Image Processing, 2010, 19(5): 1328-1337.
  • 8Otsu N. A Threshold Selection Method from Gray Level Histograms[J]. IEEE Transcations on Systems, Man and Cybernetics, 1979, 9(1): 62-66.
  • 9Shi v, Eberhart R. A Modified Particle Swarm Optimizer[CJ / /Proceeding of IEEE World Congress on Computational Intelligence. Piscataway: IEEE, 1998: 69-73.
  • 10Zhu Zexuan, ZhouJ iarui ,Ji Zhen, et al. DNA Sequence Compression Using Adaptive Particle Swarm Optimization?based Memetic Algorithrnj I}. IEEE Transcations on Evolutionary Computation, 2011, 15( 5): 643-658.

二级参考文献19

  • 1李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(S1):7-12. 被引量:230
  • 2盛辉,廖明生,张路.基于典型相关分析的变化检测中变化阈值的确定[J].遥感学报,2004,8(5):451-457. 被引量:33
  • 3Singh A.Digital change detection techniques using remotely sensed data[J].International Journal of Remote Sensing,1989,10(6):989-1003.
  • 4Brozzone L,Prieto D F.Automatic analysis of the difference image for unsupervised change detection[J].IEEE Transaction on Geoscience and Remote Sensing,2000,38(3):1171-1182.
  • 5Bazi Y,Bruzzone L,Melgani F.An unsupervised approach based on generalized Gaussian model to automatic change detection in multi temporal SAR images[J].IEEE Transaction on Geoscience and Remote Sensing,2005,43(4):874-887.
  • 6Chen J,Gong P,He C Y,et al.Land sue/land cover change detection using improved change vector ananlysis[J].Photogrammetric Engineering and Remote Sensing,2003,69(4):369-379.
  • 7Brozzone L,Prieto D F.An adaptive semiparametric and context based approach to unsupervised change detection in multitemporal remote sensing images[J].IEEE Transaction on Image Processing,2002,11(4):452-466.
  • 8Gopal S,Woodcock C.Theory and methods for accuracy assessment of thematic maps using fuzzy sets[J].Photogrammetric Engineering and Remote Sensing,1994,60(2):181-188.
  • 9Orlando J T,Rui S.Image Segmentation by histogram thresholding using fuzzy sets[J].IEEE Transaction on Image Processing,2002,11(12):1457-1465.
  • 10Singh A. Digital change detection techniques using remotely sensed data [ J ]. International Journal of Remote Sensing, 1989,10(6) :989 - 1003.

共引文献26

同被引文献51

  • 1王文光,王俊,毛士艺.一种基于差异度的极化SAR图像迭代分类方法[J].电子与信息学报,2006,28(11):2007-2010. 被引量:9
  • 2宋宇辰,张玉英,孟海东.一种基于加权欧氏距离聚类方法的研究[J].计算机工程与应用,2007,43(4):179-180. 被引量:35
  • 3郝洪美.基于极化SAR影像的地物变化检测技术研究[D].阜新:辽宁工程技术大学,2010:41-43.
  • 4冈萨雷斯.数字图像处理[M].第二版.北京:电子工业出版社,2005:277-325.
  • 5Celik T.Multiscale change detection in multitemporal satellite images[J].IEEE Geoscience and Remote Sensing Letters,2009,6(4):820-824.
  • 6Bovolo F,Bruzzone L.A detail-preserving scale-driven approach to change detection in multitemporal SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43 (12):2963-2972.
  • 7He C, Zhuo T, Ou D, et al. Nonlinear Compressed Sensing-based LDA Topic Model for Polarimetric SAR Image Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 20111,, 7(3) : 972- 982.
  • 8Niu X, Ban Y F. A Novel Contextual Classification Algorithm for Multitemporal Polarimetric SAR Data [J]. IEEE Geoscience and Remote Sensing I.etters, 2014, 11(3): 681-685.
  • 9Lee J S, Grunes M R, Pottier E, et al. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, ,12(4) : 722-731.
  • 10Wang S, Liu K, Pei J J, et al. Unsupervised Classification of Fully Polarimetric SAR Images Based on Scattering Power Entropy and Copolarized Ratio[J]. 1EEEGeoscience and Remote Sensing Letters, 2013, 10 (3): 622-626.

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部