摘要
In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.
In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.
基金
supported by NSFC(11171370)