期刊文献+

自适应初始轮廓的Chan-Vese模型图像分割方法 被引量:5

Chan-Vese Model with Adaptive Initial Contour for Image Segmentation
下载PDF
导出
摘要 Chan-Vese模型(CV模型)是一种在图像力和外部约束力作用下从初始轮廓向目标边界运动的变形曲线,在图像分割、边缘检测等研究领域得到了广泛应用。但由于图像个体差异性较大,目前针对CV模型中初始轮廓的自动提取问题研究较少。提出了一种基于视觉认知的自适应CV模型图像分割方法。该方法根据视觉注意机制和bottom-up的底层图像特征分析,自动获取图像中目标区域的先验形状信息,用于约束CV模型中的初始轮廓,在此基础上,构造一种简化的CV模型对图像进行分割。实验结果表明,该方法具有鲁棒性和自适应性,能够有效降低初始轮廓位置对活动轮廓模型的影响,显著提高模型的收敛速度,同时减少算法迭代次数。 Chan-Vese model (CV model) is a deformable curve moving from initial contour to object boundary under the influence of internal image force and external constraint force, which is widely used in a number of application domains including image segmentation, boundary detection and other research areas. However, little has been discussed on initial contour extracting algorithm due to the individual diversity of images. This paper proposes an adaptive CV model segmentation algorithm based on visual perception. Firstly, the priori shape information of target object regions is obtained automatically based on visual attention mechanism and image feature analyzing from bottom to top. Then, a modified CV model with self-adaptive initial contour is presented on this basis for image segmentation. The experimental results demonstrate that the proposed ACV model is robust and adaptive; therefore the impact of initial contours to active contour models is reducing effectively, meanwhile it is easier to implement and faster in computation for image segmentation than traditional CV model.
出处 《计算机科学与探索》 CSCD 2013年第12期1115-1124,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 山西省回国留学人员科研资助项目 山西省青年科技基金~~
关键词 Chan—Vese模型 视觉认知 水平集方法 图像分割 Chan-Vese model visual perception level set method image segmentation
  • 相关文献

参考文献29

  • 1Chan T, Vese L. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-276.
  • 2r Chan T, Sandberg B, Vese L. Active contours without edges for vector-valued images[J]. Journals of Visual Communica- tion and Image Representation, 2000, 11 (2): 130-141.
  • 3He Lei, Peng Zhigang, Bryan E, et al. A comparative study of deformable contour methods on medical image segmen- tation[J]. Image and Vision Computing, 2008, 26(2): 141-163.
  • 4LI Can-Fei WANG Yao-Nan LIU Guo-Cai.A New Splitting Active Contour Framework Based on Chan-Vese Piecewise Smooth Model[J].自动化学报,2008,34(6):659-664. 被引量:3
  • 5Chan T, Vese L. Active contour and segmentation models using geometric PDE' s for medical imaging[M]//Geomet- ric Methods in Bio-Medical Image Processing. Berlin, Hei- delberg: Springer, 2002: 63-75.
  • 6Ge Qi, Xiao Liang, Zhang Jun, et al. An improved region-based model with local statistical features for image segmentation[J]. Pattern Recognition, 2012, 45(4): 1578-1590.
  • 7Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
  • 8Wang Xiaofeng, Huang Deshuang, Xu Huan. An efficient local Chan-Vese model for image segmentation[J]. Pattern Recognition, 2010, 43(3): 603-618.
  • 9Vese L, Chan T. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. Inter- national Journal of Computer Vision, 2002, 50(3): 271-293.
  • 10Li Chunming, Kao C, Gore J, et al. Implicit active contours driven by local binary fitting energy[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '07), Minneapolis, USA, 2007. Wash-ington, DC, USA: IEEE Computer Society, 2007: 1-7.

二级参考文献19

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. International Journal of Computer Vision, 1988, 1(4): 321-331
  • 2Terzopoulos D, Witkin A, Kass M. Constraints on deformable models: recovering 3D shape and nonrigid motion. Artificial Intelligence, 1988, 36(1): 91-123
  • 3Caselles V, Kimmel R, Sapiro G. Geodesic active contours. In: Proceedings of the 5th International Conference on Computer Vision. Boston, USA: IEEE, 1995. 694-699
  • 4Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1): 61-79
  • 5Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A. Gradient flows and geometric active contour models. In: Proceedings of the 5th International Conference on Computer Vision. Boston, USA: IEEE, 1995. 810-815
  • 6Krissian K, Ellsmere J, Vosburgh K, Kikinis R, Westin C F. Multiscale segmentation of the aorta in 3D ultrasound images. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS. Cancun, Mexico: IEEE, 2003. 638-641
  • 7Han X, Xu C Y, Prince J L. A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 755-768
  • 8Suri J S. Two-dimensional fast magnetic resonance brain segmentation. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(4): 84-95
  • 9Geomes J, Faugeras O D. Level sets and distance functions. In: Proceedings of the 6th European Conference on Computer Vision-Part Ⅰ. London, UK: Springer-Verlag, 2000. 588-602
  • 10Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277

共引文献2

同被引文献56

  • 1龚永义,罗笑南,黄辉,廖国钧,张余.基于单水平集的多目标轮廓提取[J].计算机学报,2007,30(1):120-128. 被引量:22
  • 2何传江,唐利明.几何活动轮廓模型中停止速度场的异性扩散[J].软件学报,2007,18(3):600-607. 被引量:23
  • 3单勇,王润生,杨凡.基于多特征背景模型的运动目标检测算法[J].计算机工程与科学,2007,29(8):40-42. 被引量:4
  • 4OSHER S, SETHIAN J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton- Jacobi formulations [J ]. Journal of Computational Physics, 1988, 79(1) : 12-49.
  • 5CASELLES V, MORE J M, SAPIRO G. Geodesic active contours [ J]. International Journal of Computer Vision, 1997, 22(1) : 61-79.
  • 6MALLADI R, SETIAN J A, VEMURI B C. Shape modeling with front propagation: a level set approach [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
  • 7LI Chun-ming, XU Chen-yang, GUI Chang-feng. Distance regularized level set evolution and its application to image segmentation [J]. IEEE Trans on Image Process, 2010, 12(19) : 3243-3254.
  • 8ITTI L, KOCH C. Computational modeling of visual attention [ J ]. Nature Reviews Neuroscienee, 2001, 2 (3) : 194-230.
  • 9HOU Xiao-di, ZIqANG Li-qing. Saliency detection: a spectral residual approach [ C ] //Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Min-neapolis: IEEE, 2007: 1-8.
  • 10HAREL J, KOCH C, PERONA P. Graph-based visual saliency [ C ]//Proceedings of the 21 st Annual Conference on Neural Information Processing Systems. Vancouver: The MIT Press, 2007: 545-552.

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部