期刊文献+

基于LASSO-LARS的软件复杂性度量属性特征选择研究 被引量:5

Research of Software Complexity Metric Attributes Feature Selection Based on LASSO-LARS
下载PDF
导出
摘要 针对软件可靠性早期预测中软件复杂性度量属性维数灾难问题,提出了一种基于最小绝对值压缩与选择方法(The Least Absolute Shrinkage and Select Operator,LASSO)和最小角回归(Least Angle Regression,LARS)算法的软件复杂性度量属性特征选择方法。该方法筛选掉一些对早期预测结果影响较小的软件复杂性度量属性,得到与早期预测关系最为密切的关键属性子集。首先分析了LASSO回归方法的特点及其在特征选择中的应用,然后对LARS算法进行了修正,使其可以解决LASSO方法所涉及的问题,得到相关的复杂性度量属性子集。最后结合学习向量量化(Learning Vector Quantization,LVQ)神经网络进行软件可靠性早期预测,并基于十折交叉方法进行实验。通过与传统特征选择方法相比较,证明所提方法可以显著提高软件可靠性早期预测精度。 To cope with the software complexity metric attributes dimension disaster which exists in the software relia- bility early prediction, this paper put forward a software complexity metric attribute feature selection method based on Least Absolute Shrinkage and Selection Operator(LAS~))method and the Least Angle Regression(LARS)algorithm. This method can filter out some software complexity metric attributes which have smaller influence on the early predic- tion results and can obtain the key attributes subsets associated most closely with the prediction result. This paper firstly analyzed the characteristics of LAS~) regression method and its application in feature selection, secondly modified the LARS algorithm so that it can be used to solve the problems which LASSO method involves and get relevant complexity metric attribute subsets, lastly combined with the Learning Vector Quantization(LVQ)neural network to carry on the early software reliability prediction experiment. During the experiment, the authors used the 10-fold experiment meth- ods. The experiment results indicate that the method can improve early prediction accuracy of software reliability.
出处 《计算机科学》 CSCD 北大核心 2013年第11期169-173,共5页 Computer Science
基金 国家863项目计划(2008AA01Z404)资助
关键词 软件可靠性早期预测 特征选择 LASSO回归方法 LARS算法 LVQ神经网络 Software reliability early prediction, Feature selection, LASSO regression method, LARS algorithm, LVQ neural network
  • 相关文献

参考文献18

  • 1Vub C, Fb B, I-Ling Yen, et al. Empirical assessment of machine learning based software defect prediction techniques[C]//Pro- ceedings of the 10thIEEE International Workshop on Object-O- riented Real-Time Dependable Systems. Washington, DC, USA, 2005:263 270.
  • 2王琪.软件质量预测模型中的若干关键问题研究[D].上海:上海交通大学.2006.
  • 3Breiman L, Friedman J, Olshen R, et al. Classification and re- gression trees[J]. Data Mining and Knowledge Discovery, 1984, 1(1):14-23.
  • 4Breiman L. Better subset regression using the normegative gar- rote [J]. Technometrics, 1995,37 (4) : 373-384.
  • 5张玲,刘勇,何伟.自适应遗传算法在车牌定位中的应用[J].计算机应用,2008,28(1):184-186. 被引量:36
  • 6姜慧研,宗茂,刘相莹.基于ACO-SVM的软件缺陷预测模型的研究[J].计算机学报,2011,34(6):1148-1154. 被引量:44
  • 7Tibshirani R. Regression shrinkage and selection via the lasso [J]. J. Royal. Statist. Soe. (B), 1996,58 : 267-288.
  • 8Halstead M. H. Elements of Software Science [M]. New York: Elsevier North Holland, 1977.
  • 9MeCabe T J. A complexity measure [J]. IEEE Transactions on Software Engineering, 1976, SE-2(4) : 308-320.
  • 10李轩,郝克刚,葛玮.面向对象软件度量的分析和研究[J].计算机技术与发展,2006,16(11):38-41. 被引量:7

二级参考文献31

  • 1路小波,张光华.基于二值图像的车牌精确定位方法[J].东南大学学报(自然科学版),2005,35(6):972-974. 被引量:24
  • 2卢昭金,韩焱.基于OTSU法的车牌自动定位技术研究[J].电脑开发与应用,2006,19(5):2-4. 被引量:6
  • 3李志鹏,郭勇,沈军.基于DDS技术实现信号发生器[J].微计算机信息,2007,23(19):175-177. 被引量:30
  • 4Challagulla V U B, Bastani F B, I-Ling Yen, Paul R A. Empirical assessment of machine learning based software defect prediction techniques//Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems. Washington, DC, USA, 2005:263-270.
  • 5Lyu Michael R. Handbook of Software Reliability Engineering. New York: IEEE Computer Society Press and McGrawHill Book Company, 1996.
  • 6Khoshgoftaar Taghi M, Seliya Naeen. Tree-based software quality estimation models for fault predietion//Proeeedings of the 8th International Symposium on Software Metrics. Washington, 13(3, USA, 2002x 123-128.
  • 7Stich Timothy Janes, Spoerre Julie K, Velasco Tomas. The application of artificial neural networks to monitoring and control of an induction hardening process. Journal of Industrial Technology, 2000, 16(1): 1-11.
  • 8Ohlsson Niclas, Alberg Hans. Predicting fault-prone software modules in telephone switches. IEEE Transactions on Software Engineering, 1996, 22(12): 886-894.
  • 9Khoshgoftaar Taghi M, Seliya Naeem. Software quantity classification modeling using the SPRINT decision tree algorithm//Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence. Washington, DC, USA, 2002:365-367.
  • 10Briand L C, Melo W L, Wust J. Assessing the applicability of fault-proneness models across object-oriented software projects. IEEE Transactions on Software Engineering, 2002, 28(7) : 706-720.

共引文献85

同被引文献51

  • 1王未.分析人工智能支持下自适应学习路径构建[J].汉字文化,2021(4):130-131. 被引量:7
  • 2吕春燕,孟浩,何建坤.研究型大学在国家自主创新体系中的作用分析[J].清华大学教育研究,2005,26(5):1-7. 被引量:38
  • 3Einav L,Levin J.The data revolution and economic analysis[J].Innovation Policy and the Economy,2014,14(1):1-24.
  • 4Vosen S,Schmidt T.Forecasting private consumption:survey-based indicators vs.Google trends[J].Journal of Forecasting,2011,30(6):565-578.
  • 5Fan Jianqing,Lyu Jinchi.Sure independence screening for ultrahigh dimensional feature space[J].Journal of the Royal Statistical Society:Series B,2008,70(5):849-911.
  • 6Tibshirani R.Regression shrinkage and selection via the Lasso[J].Journal of the Royal Statistical Society:Series B,1996,58(1):267-288.
  • 7Zou Hui,Hastie T.Regularization and variable selection via the elastic net[J].Journal of the Royal Statistical Society:Series B,2005,67(2):301-320.
  • 8Hartnett M K,Lightbody G,Irwin G W.Dynamic inferential estimation using principal components regression[J].Chemometrics and Intelligent Laboratory Systems,1998,40(2):215-224.
  • 9Xu Qingsong,Liang Yizeng,Shen Hailin.Generalized PLS regression[J].Journal of Chemometrics,2001,15(3):135-148.
  • 10Yuan Ming,Lin Yi.Model selection and estimation in regression with grouped variables[J].Journal of the Royal Statistical Society:Series B,2006,68(1):49-67.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部