期刊文献+

应用遗传算法优化子空间的SVM分类算法 被引量:8

GA-based Subspace Classification Algorithm for Support Vector Machines
下载PDF
导出
摘要 提出了一种应用遗传算法优化子空间的SVM分类算法GS-SVM。该算法首先改进样本选择策略,采用基于置信度和凸包的样本选择方法,考虑类间距离和样本分布等因素,选择典型代表样本作为SVM的新训练集;然后采用矩阵式混合编码方式,利用遗传算法一并优化代表样本的特征子空间和SVM分类参数,并根据特征优化后的代表样本,构建SVM分类模型。在UCI的11个数据集上进行的仿真实验结果表明,该算法在大部分数据集上均可获得较小的样本规模和特征维数,以及较高的分类精度。 This paper presented a new GA based Subspace classification algorithm for SVM(GS-SVM). A modified sample selection method is adopted to select a subset of training data based on both the confidence and the convex hull. Then the representative samples are selected to train the SVM models by considering the distances between classes and the sample distribution. The algorithm adopts the matrix-form mixed encoding. Genetic algorithm is used to optimize the feature subspace of representative samples and the classification parameters of SVM simultaneously. The SVM classifi- cation model is produced based on the representative samples with the optimized feature subspace. Experimental results on eleven UCI datasets illustrate that the proposed algorithm is able to select both smaller sample subset and feature size,and achieve higher classification accuracy than the traditional classification algorithms.
作者 蒋华荣 郁雪
出处 《计算机科学》 CSCD 北大核心 2013年第11期255-260,275,共7页 Computer Science
基金 国家自然科学基金项目(61202030)资助
关键词 子空间分类 遗传算法 支持向量机 样本选择 凸包 Subspace classification,Genetic algorithm, Support vector machine, Sample selection, Convex hull
  • 相关文献

参考文献22

  • 1He Qiang, Xie Zong-xia, Hu Qing-hua, et al. Neighborhood based sample and feature selection for SVM classification leam- ing[J]. Neuroeomputing, 2011,74(10) : 1585-1594.
  • 2Huang C L, Wang C J. A GA-based feature selection and param- eters optimization for support vector machines[J]. Expert Sys- tems with Applications, 2006,35(4) 231-240.
  • 3王世卿,曹彦.基于遗传算法和支持向量机的特征选择研究[J].计算机工程与设计,2010,31(18):4088-4092. 被引量:19
  • 4Tian Jin, Li Min-qiang, Chen Fu-zan. Dual-population based co- evolutionary algorithm for designing RBFNN with feature selec- tion[J]. Expert Systems with Applications, 2010, 37 (10) : 6904- 6918.
  • 5Oja E. Subspaee methods of pattern reeognition[M]. New York: Research Studies Press, 1983.
  • 6Qiu Guo-ping, Fang Jian-zhong. Classification in an informative sample subspace[J]. Pattern Recognition, 2008,41(3) : 949-960.
  • 7Cevikalp H, Neamtu M, Barkana A. Kernel common vector me- thod: A Novel nonlinear subspaee classifier for pattern reeogni- tion[J]. IEEE Transaetions On Systems, Man and Cybernetics, 2007,37(4) :937-951.
  • 8Wen Ying. An improved discriminative common vectors and sup- port vector machine based faee recognition approach[J]. Expert Systems with Applications, 2012,39 (4), 4628-4632.
  • 9Sakano H, Mukawa N, Nakamura T. Kernel mutual subspace method and its application for object reeognition[J]. Electronics and Communications in Japan ( Part II: Electronics), 2005, 88 (6) : 45-53.
  • 10Kazuhiro F, Osamu Y. The kernel orthogonal mutual subspace method and its application to 3D object reeognition[C]///8th Asian Conference on Computer Vision. Tokyo, 2007 : 467-476.

二级参考文献38

  • 1张生亮,杨静宇.二维投影与PCA相结合的人脸识别算法[J].计算机工程,2006,32(16):165-166. 被引量:6
  • 2姜文瀚,杨静宇,周晓飞.Fisher鉴别特征的最近邻凸包分类[J].计算机科学,2007,34(2):186-188. 被引量:2
  • 3卡内基梅隆大学.机器学习[M].北京:机械工业出版社,2007:179-193.
  • 4Liu H,Yu L.Toward integrating feature selection algorithms for classification and clustering[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(4):491-502.
  • 5Mao K Z.Feature subset selection for support vector machines through discriminative function pruning analysis[J].IEEE Transactions on Systems,Man and Cybernetics,2004,34(1):60-67.
  • 6Yu L,Liu H.Efficient feature selection via analysis of relevance and redundancy[J].Journal of Machine Learning Research,2004,46(5):1205-1224.
  • 7Cherkassky V,Ma Y.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126.
  • 8Marchiori E.Class conditional nearest neighbor for large margininstance selection[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2010,32(2):364-370.
  • 9Nikolaidis K,Goulermas J Y,Wu Q H.A class boundary preser-ving algorithm for data condensation[J].Pattern Recognition,2011,44(3):704-715.
  • 10Barandela R,Ferri F J,Sanchez J S.Decision boundary preser-ving prototype selection for nearest neighbor classification[J].International Journal of Pattern Recognition and Artificial Intel-ligence,2005,19(6):787-806.

共引文献27

同被引文献83

引证文献8

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部