Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis
Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis
摘要
We present recent work of harmonic and signal analysis based on the complex Hardy space approach.
We present recent work of harmonic and signal analysis based on the complex Hardy space approach.
基金
supported by Research Grant of University of Macao MYRG115(Y1-L4)-FST13-QT
Macao Science and Technology Fund FDCT/098/2012/A3
关键词
Mobius
transform
Blaschke
form
mono-component
Hardy
space
adaptive
Fourier
decomposi-tion
rational
approximation
rational
orthogonal
system
time-frequency
distribution
digital
signal
processing
uncertainty
principle
higher
dimensional
signal
analysis
in
several
complex
variables
and
the
Clifford
algebrasetting.
Mobius transform, Blaschke form, mono-component, Hardy space, adaptive Fourier decomposi-tion, rational approximation, rational orthogonal system, time-frequency distribution, digital signal processing,uncertainty principle, higher dimensional signal analysis in several complex variables and the Clifford algebrasetting.
参考文献60
-
1A. Axelsson, K.I. Kou, T. Qian. Hilbert transforms and the Cauchy integral in Euclidean space, Studia Math, 2009, 193(2): 161-187.
-
2L. Baratchart, M. Cardelli, M. Olivi. Identification and rational L2 approximation, a gradient algorithm, Automatica, 1991, 27: 413-418.
-
3S. Bell. The Cauchy Transform, Potential theory and Conformal Mappings, CRC Press, Boca, Raton, 1992.
-
4B. Boashash. Estimating and interpreting the instantaneous frequency of a signal--Part 1: fundamentals, Proc IEEE, 1992, 80(4): 520-538.
-
5Q.S. Cheng. Digital Signal Processing, Peking University Press, 2003, in Chinese.
-
6Q.H. Chen, T. Qian, L.H. Tan. Constructive proof of Beurling-Lax theorem, accepted to appear in Chinese Ann Math. L. Cohen. Time-Frequency Analysis: Theory and Applications, Prentice Hall, 1995.
-
7P. Dang, T. Qian. Analytic phase derivatives, all-pass filters and signals of minimum phase, IEEE Trans Signal Process, 2011, 59(10): 4708-4718.
-
8P. Dang, G.T. Deng, T. Qian. A sharper uncertainty principle, J Funct Anal, 2013, 265: 2239-2266.
-
9P. Dang, G.T. Deng, T. Qian. A tighter uncertainty principle for linear canonical transform in terms of phase derivative, accepted to appear in IEEE Trans Signal Process.
-
10P. Dang, T. Qian, Z. You. Hardy-Sobolev spaces decomposition and applications in signal analysis, J Fourier Anal Appl, 2011, 17(1): 36~64.
-
1LI Xiukun,YANG Shi’e (Department of Underwater Acoustic Engineering, Harbin Engineering University Harbin 150001).Acoustic signal analysis of underwater elastic cylinder[J].Chinese Journal of Acoustics,2001,20(1):61-65. 被引量:1
-
2Anton Deitmar School of Mathematical Sciences University of Exeter Laver Building, North Park Road Exeter, EX4 4QE Devon, UK.HARMONIC ANALYSIS ON THE QUOTIENT k^x非汉字符号k\A^1非汉字符号A^1[J].Acta Mathematica Scientia,2001,21(1):21-28.
-
3Mohamed Adel Sharaf,Hadia Hassan Selim.Recursive harmonic analysis for computing Hansen coefficients[J].Research in Astronomy and Astrophysics,2010,10(12):1298-1306. 被引量:1
-
4王大海.关于《REAL VARIABLE METHODS IИ HARMOИIC ANALYSIS》一书的注记[J].东北师大学报(自然科学版),1990,22(3):27-36.
-
5LIU PeiDe,WANG MaoFa.Weak Orlicz spaces:Some basic properties and their applications to harmonic analysis[J].Science China Mathematics,2013,56(4):789-802. 被引量:8
-
6翟增强.新的数学理论在继电保护中的应用及广域保护概述[J].中小企业管理与科技,2012(25):91-93.
-
7安金鹏,钱敏,王正栋.HOLOMORPHIC HARMONIC ANALYSIS ON COMPLEX REDUCTIVE GROUPS[J].Acta Mathematica Scientia,2008,28(3):560-572.
-
8于树模.THE FOURIER TRANSFORM AND THE PARSEVAL FORMULA IN HARMONIC ANALYSIS FOR OPERATORS[J].Chinese Annals of Mathematics,Series B,1992,13(1):59-67.
-
9Alex Iosevich,陆柱家,陈凌宇.曲率,组合学和Fourier变换[J].数学译林,2015,0(3):195-204.
-
10陈天平.ON THE ALMOST EVERYWHERE CONVERGENCE OF A KIND OF INTEGRALS[J].Chinese Science Bulletin,1983,28(11):1565-1566.