期刊文献+

Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis

Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis
下载PDF
导出
摘要 We present recent work of harmonic and signal analysis based on the complex Hardy space approach. We present recent work of harmonic and signal analysis based on the complex Hardy space approach.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第4期505-530,共26页 高校应用数学学报(英文版)(B辑)
基金 supported by Research Grant of University of Macao MYRG115(Y1-L4)-FST13-QT Macao Science and Technology Fund FDCT/098/2012/A3
关键词 Mobius transform Blaschke form mono-component Hardy space adaptive Fourier decomposi-tion rational approximation rational orthogonal system time-frequency distribution digital signal processing uncertainty principle higher dimensional signal analysis in several complex variables and the Clifford algebrasetting. Mobius transform, Blaschke form, mono-component, Hardy space, adaptive Fourier decomposi-tion, rational approximation, rational orthogonal system, time-frequency distribution, digital signal processing,uncertainty principle, higher dimensional signal analysis in several complex variables and the Clifford algebrasetting.
  • 相关文献

参考文献60

  • 1A. Axelsson, K.I. Kou, T. Qian. Hilbert transforms and the Cauchy integral in Euclidean space, Studia Math, 2009, 193(2): 161-187.
  • 2L. Baratchart, M. Cardelli, M. Olivi. Identification and rational L2 approximation, a gradient algorithm, Automatica, 1991, 27: 413-418.
  • 3S. Bell. The Cauchy Transform, Potential theory and Conformal Mappings, CRC Press, Boca, Raton, 1992.
  • 4B. Boashash. Estimating and interpreting the instantaneous frequency of a signal--Part 1: fundamentals, Proc IEEE, 1992, 80(4): 520-538.
  • 5Q.S. Cheng. Digital Signal Processing, Peking University Press, 2003, in Chinese.
  • 6Q.H. Chen, T. Qian, L.H. Tan. Constructive proof of Beurling-Lax theorem, accepted to appear in Chinese Ann Math. L. Cohen. Time-Frequency Analysis: Theory and Applications, Prentice Hall, 1995.
  • 7P. Dang, T. Qian. Analytic phase derivatives, all-pass filters and signals of minimum phase, IEEE Trans Signal Process, 2011, 59(10): 4708-4718.
  • 8P. Dang, G.T. Deng, T. Qian. A sharper uncertainty principle, J Funct Anal, 2013, 265: 2239-2266.
  • 9P. Dang, G.T. Deng, T. Qian. A tighter uncertainty principle for linear canonical transform in terms of phase derivative, accepted to appear in IEEE Trans Signal Process.
  • 10P. Dang, T. Qian, Z. You. Hardy-Sobolev spaces decomposition and applications in signal analysis, J Fourier Anal Appl, 2011, 17(1): 36~64.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部