期刊文献+

一个具有时滞和阶段结构的捕食-被捕食模型的稳定性 被引量:1

Stability of a predator-prey system with time delay and stage structure
下载PDF
导出
摘要 研究一个具有时滞和捕食者、食饵均具有阶段结构的捕食者-食饵模型的稳定性.通过分析特征方程,运用Hurwitz判断定理,讨论了该模型非负平衡点的局部稳定性,并得到了Hopf支存在的充分条件;通过构造适当的Lyapunov泛函,运用LaSalle不变集原理,讨论了该模型的非负平衡点的全局稳定性,从而得到了保证该生态系统永久持续生存与灭绝的充分条件. The stability of a predator-prey model with time delay and stage structure for both the predator and the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of each feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the positive equilibrium is established. By using Lyapunov functions and the LaSalle invariant principle, the global stability of each feasible equilibria of the model is discussed.
作者 王玲书
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2013年第4期466-476,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11101117)
关键词 捕食者-食饵模型 时滞 阶段结构 HOPF分支 稳定性 predator-prey model time delay stage-structure: HoDf bifurcation stabilitv
  • 相关文献

参考文献9

  • 1Holling C S. The functional response of predators to prey density and its role in minicry and population regulation[J], Mem Entomolog Soc Can, 1965, 45: 3-60.
  • 2Wang Wendi, Chen Lansun. A predator-prey system with stage-structure for predator[J]. Comput Math Appl, 1997, 33: 83-91.
  • 3Wang Wendi. Global dynamics of a population model with stage structure for predator[J]. Chen L, et. al(Eds), Advanced topics in Biomathematics, Word Scientific Publishing Co. Pte Led, 1997: 253-257.
  • 4Xu Rui, Ma Zhien. The effect of stage-structure on the permanence of a predator-prey system with time delay[J]. Appl Math Comput. 2007, 189: 1164-1177.
  • 5Xu Rui. Global stability and Hopf bifurcation of a predator-prey model with stage structure and delayed predator response[J]. Nonlinear Dyn, 2012, 67(2): 1683-1693.
  • 6Hale J. Theory of Functional Differential Equation[M]. Springer Heidelberg, 1977.
  • 7Kuang Y. Delay Differential Equation with Application in Population Synamics[M]. New York: Academic Press, 1993.
  • 8Kuang Y, So J W H. Analysis of a delayed two-stage population with space-limited recruit- ment[J]. SIAM J Appl Math, 1995, 55: 1675-1695.
  • 9Hale J, Waltman P. Persistence in infinite-dimentional systems[J]. SIAM J Math Anal, 1989, 20: 388-395.

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部