期刊文献+

基于视觉注意机制的海洋监视卫星图像舰船目标检测 被引量:8

Ship Targets Detection of Ocean Surveillance Satellite Images Based on Visual Attention
原文传递
导出
摘要 将Itti模型应用于海洋监视卫星图像舰船目标的检测中。简要阐述了Itti模型的算法处理过程,并将视觉注意点的提取转移过程建立为电容阵列充电模型。针对Itti模型的诸多问题,比如所提取的显著区域形状大小固定、小半径检测实时性差、大半径检测包含背景区域多等,提出了改进算法:引入离散矩变换,增强了图像纹理特征响应;采用阈值分割的方法由显著点搜寻显著区域,提高了检测精度和实时性。运用Matlab对算法进行测试,实验结果表明,改进算法所提取的显著区域形状大小基本与目标一致,实时性好,且显著区域包含背景少。与Itti模型相比,改进算法更适合应用于海洋监视卫星图像舰船目标检测提取。 An improved Ittirs model is applied on the ship targets detection of ocean surveillance satellite images. We illustrate the algorithm process of Ittirs model, and introduce a capacitor array charging model to describe the extracting and transferring process of the focus of attention. To solve the problems existing in the traditional Itti's model such as the fixed shape and size of the extracted salient region, the poor real-time detecting performance when the radius of salient region goes too small, and excessive background areas contained in the salient region when the radius is set too large, the algorithm is improved in some aspects in this paper. Firstly, the discrete moment transform is introduced to the algorithm to enhance the response of image texture features. Then, the threshold segmentation method is chosen to extract the salient region with the focus of attention, and thus both the detection accuracy and real-time performance are improved greatly. According to the Matlab test results of the improved algorithm, it is verified that both the shape and size of the salient region are consistent well with the ship targets; the background contained in the salient region is also reduced significantly. Moreover, the improved algorithm has a good real-time performance. It comes to the conclusion that compared with Itti's model, the improved algorithm is more effective and suitable for the extraction of ship tarlzets detection of ocean satellite images.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第12期57-65,共9页 Laser & Optoelectronics Progress
基金 国家863计划(2008AA121803) 国家自然科学基金(6110066)
关键词 图像处理 视觉注意 显著特征 海洋监视卫星图像 舰船目标识别 阈值分割 image processing visual attentiom salient feature ocean surveillance satellite image ship targetsdetection threshold segmentation
  • 相关文献

参考文献12

二级参考文献122

共引文献165

同被引文献75

  • 1肖利平,曹炬,高晓颖.复杂海地背景下的舰船目标检测[J].光电工程,2007,34(6):6-10. 被引量:33
  • 2张风丽,张磊,吴炳方.欧盟船舶遥感探测技术与系统研究的进展[J].遥感学报,2007,11(4):552-562. 被引量:24
  • 3A Criminisi, I Reid, A Zisserman. Single view metrology [J]. International Journal of Computer Vision, 2000, 40 (2) : 123 - 148.
  • 4E Delage, H Lee, A Y Ng. A dynamic Bayesian network model for autonomous 3d reconstruction from a single indoor image [C]. 2006 IEEE computer Society Couferenee on Computer Vision and Pattern Recognition, 2006, 2: 2418-2428.
  • 5A Saxena, S H Chung, A Y Ng. Learning depth from single monocular images [C]. NIPS, 2005, 18: 1-8.
  • 6A Saxena, M Sun, A Y Ng. Make 3D: Learning 3D scene structure from a single still image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (5): 824-840.
  • 7A Saxena, S H Chung, A Y Ng. 3D depth reconstruction from a single still image [J]. International Journal of Computer Vision,2008, 76(1): 53-69.
  • 8D Hoiem, A A Efros, M Hebert. Geometric context from a single image [C]. 10th IEEE International Conference on Computer Vision, IEEE, 2005, 1: 654-661.
  • 9D Hoiem, A A Efros, M Hebert. Recovering surface layout from an image [J]. International Journal of Computer Vision, 2007, 75(1): 151-172.
  • 10D Hoiem, A A Efros, M Hebert. Automatic photo pop-up [J]. ACM Transactions on Graphics, 2005, 24(3): 577-584.

引证文献8

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部