期刊文献+

手掌姿态自适应的单指尖鲁棒跟踪方法 被引量:5

Robust Single Fingertip Tracking Method Based on Palm Posture Self-adaption
下载PDF
导出
摘要 针对现有的基于深度传感器进行指尖检测的工作中不能对任意姿态手掌的指尖进行稳定检测和跟踪的问题,基于卡尔曼滤波器原理并融入对手掌姿态的感应机制,提出一种手掌姿态自适应的卡尔曼单指尖动态跟踪方法.首先借助上一时刻指尖的位置信息得到当前时刻指尖位置的预测值L1;然后通过手掌姿态检测得到用于更新指尖位置的观测值L2;最后根据L1和L2执行更新操作,得到最终的指尖位置估计值L*.实验结果表明,该方法可以实现准确、鲁棒的单指尖位置信息检测和跟踪,能够达到人机交互的实用性标准. In view of the existing fingertip detection work based on depth sensors, aimed at stable detection and tracking of fingertip of any palm posture, palm posture self-adaption single fingertip tracking is proposed based on Kalman filter theory and by blending in the palm posture sensing mechanism. First get the current predictive value LI of fingertip position according to the fingertip position information of previous moment. Then get the observed value L2 of fingertip position used to update the fingertip position by palm posture detection. Finally get the estimated value L ^* of fingertip position by performing update operation according to L1 and L2 of fingertip position. The results show that the proposed method can realize accurate and robust single fingertip position detection and tracking, and achieve practical standards of human-computer interaction.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第12期1793-1800,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61070110 61173066)
关键词 普适计算 人机交互 深度传感器 单指尖跟踪 pervasive computing human-computer interaction depth sensor single fingertip tracking
  • 相关文献

参考文献18

  • 1杨波,宋晓娜,冯志全,郝晓艳.复杂背景下基于空间分布特征的手势识别算法[J].计算机辅助设计与图形学学报,2010,22(10):1841-1848. 被引量:52
  • 2Satvanarayan A. Weibel N. HollanJ. Using overlays to support collaborative interaction with display walls[CJ II Proceedings of the ACM International Conference on Intelligence User Interface. New York: ACM Press. 2012: 105-108.
  • 3Nancel M ? WagnerJ. Pietriga E. et al. Mid -air pan - and - zoom on wall-sized displays[CJ IIProceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press. 2011: 177-186.
  • 4Fan H. Yao S. Fingertips-based gesture recognition for interaction[CJ II Computer Graphics Proceedings. Annual Conference Series. ACM SIGGRAPH. New York: ACM Press. 2012: 347.
  • 5包加桐,宋爱国,郭晏,唐鸿儒.基于SURF特征跟踪的动态手势识别算法[J].机器人,2011,33(4):482-489. 被引量:23
  • 6Bopalkar S M, Talwai r. Parmar B H. Body parts detection in gesture recognition using color information[CJ II Proceedings of the International Conference &. Workshop on Emerging Trends in Technology. New York: ACM Press, 2011: 149-152.
  • 7Silanon K, Suvonvorn N. Hand motion analysis for Thai alphabet recognition using HMM[J]. InternationalJournal of Information and Electronics Engineering, 2011, 1(1): 65-71.
  • 8AL-Rousan M, Assaleh K, Tala'a A. Video-based signer?independent Arabic sign language recognition using hidden Markov models[J]. Applied Soft Computing, 2009, 9 (3) : 990-999.
  • 9孙超,张明敏,李扬,汤兴,潘志庚.增强现实环境下的人手自然交互[J].计算机辅助设计与图形学学报,2011,23(4):697-704. 被引量:15
  • 10Caglar M B, Lobo N. Open hand detection in a cluttered single image using finger primitives[CJ IIProceedings of the Conference on Computer Vision and Pattern Recognition Workshop. Los Alamitos: IEEE Computer Society Press, 2006: Page 148.

二级参考文献50

  • 1郭兴伟,葛元,王林泉.基于形状特征的字母手势的分类及识别算法[J].计算机工程,2004,30(18):130-132. 被引量:11
  • 2张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 3朱继玉,王西颖,王威信,戴国忠.基于结构分析的手势识别[J].计算机学报,2006,29(12):2130-2137. 被引量:26
  • 4Liu Y, Gan Z J, Su Y. Static hand gesture recognition and its application based on support vector machines [C] // Proceedings of the 9th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, Phuket, 2008:517-521.
  • 5Park H S, Kim E Y, Jang S S. HMM-based gesture recognition for robot control [M]//Lecture Notes in Computer Science. Heidelberg: Springer, 2005, 3522: 607-614.
  • 6Liu H, Feng S Q, Zha H B, et al. Document image retrieval based on density distribution feature and key block feature [C] //Proceedings of the 8th International Conference on Document Analysis and Recognition. Washington D C: IEEE Computer Society Press, 2005:1040-1044.
  • 7王修晖,鲍虎军.基于自适应遗传算法的手势识别[J].计算机辅助设计与图形学学报,2007,19(8):1056-1062. 被引量:16
  • 8Simon A. First person experience and usability of co located interaction in a projection-based virtual environment [C]// Proceedings of ACM Symposium on Virtual Reality Software and Technology. New York: ACM Press, 2005:23-30.
  • 9Mulder J D. Realistic occlusion effects in mirror Based co located augmented reality systems [C] //Proceedings of 1EEE Virtual Reality Conference. Los Alamitos: 1EEE: Computer Society Press, 2005:203-208.
  • 10Zhou F, Duh H B L, Billinghurst M. Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR [C] //Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. Los Alamitos: IEEgComDuter SocietvPress, 2008= 193-202.

共引文献85

同被引文献52

  • 1朱继玉,王西颖,王威信,戴国忠.基于结构分析的手势识别[J].计算机学报,2006,29(12):2130-2137. 被引量:26
  • 2Choi H S,Kim I S,Choi J Y.Combining histogram-wise and pixel-wise matchings for kernel tracking through constrained optimization[J].Computer Vision and Image Understanding,2014,118:61-70.
  • 3Xie Y,Zhang W S,Qu Y Y,et al.Discriminative subspace learning with sparse representation view-based model for robust visual tracking[J].Pattern Recognition,2014,47 (3):1383-1394.
  • 4Bai T X,Li Y F,Zhou X L.Discriminative sparse representation for online visual object tracking[C]// Proceedings of IEEE International Conference on Robotics and Biomimetics.Los Alamitos:IEEE Computer Society Press,2012:79-84.
  • 5Mahler R P S.Multitarget Bayes filtering via first-order multitarget moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1152-1178.
  • 6Vo B N,Ma W K.The Gaussian mixture probability hypothesis density filter[J].IEEE Transactions on Signal Processing,2006,54(11):4091-4104.
  • 7Ristic B,Clark D,Vo B N.Improved SMC implementation of the PHD filter[C]//Proceedings of the 13th Conference on International Information Fusion.Los Alamitos:IEEE Computer Society Press,2010:1-8.
  • 8Vo B N,Vo B T,Pham N T,et al.Joint detection and estimation of multiple objects from image observations[J].IEEE Transactions on Signal Processing,2010,58 (10):5129-5141.
  • 9Wang Y D,Wu J K,Huang W M,et al.Gaussian mixture probability hypothesis density for visual people tracking[C]// Proceedings of the 4th International Conference on Information Fusion.Los Alamitos:IEEE Computer Society Press,2007:1-6.
  • 10Maggio E,Taj M,Cavallaro A.Efficient multi-target visual tracking using random finite sets[J].IEEE Transactions on Circuits and Systems for Video Technology,2008,18 (8):1016-1027.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部