期刊文献+

连续搅拌反应釜的自适应神经网络控制 被引量:12

Adaptive neural network control for continuous stirred tank reactor
下载PDF
导出
摘要 基于神经网络的逼近特性,针对一类包含未知函数的串级连续搅拌釜式反应系统,提出了一种自适应控制算法。由于所考虑的反应系统具有非线性特性以及未知函数存在于各子系统的方程中,因此,该系统是复杂和难于控制的。为了克服困难,神经网络逼近系统中的未知函数,新奇的递归设计方法用于消除系统中的互联项,同时,需要定义特殊的被逼近非线性函数。利用李雅普诺夫稳定性分析方法,提出的控制算法保证了闭环系统的所有信号是有界的和系统的输出收敛到零的邻域内。仿真例子表明提出的控制算法是有效的。 An adaptive control algorithm is proposed for continuous stirred tank reactor (CSTR) with unknown functions based on the approximation property of the neural networks. Because the considered reactor contains the nonlinear property and the unknown functions are included in the subsystem, it is a completed system and is very difficult to be controlled. In order to avoid the difficulties, a novel recursive procedure is given to remove the interconnection term and special approximated functions are defined to be approximated by using the neural networks. Using the Lyapunov method, the algorithm ensures that all the signals in the closed-loop are bounded and the output can converge to a neighborhood of zero. A simulation example is given to show effectiveness of the algorithm.
作者 李东娟
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第12期4674-4680,共7页 CIESC Journal
基金 国家自然科学基金项目(61174017) 辽宁省教育厅项目(L2013243)~~
关键词 神经网络 过程控制 化学反应器 非线性系统 neural network process control chemical reactors nonlinear systems
  • 相关文献

参考文献20

  • 1卢娟,夏汉初.基于反馈线性化的CSTR自适应模糊控制[J].微计算机信息,2009,25(25):70-72. 被引量:2
  • 2ChenShen(陈申),JiangJingping(蒋静坪),YuanHuigen(袁惠根).AdaptivecontrolofnonlinearforCSTR[J].信息与控制,1992,21(4):124-128.
  • 3Jana A K, Samanta A N, Ganguly S. Globally linearized control on diabetic continuous stirred tank reactor: a case study [J]. ISA Transactions, 2005, 44:423-444.
  • 4Aguilar R. Slidinomode observer for uncertainty estimation in a class of chemical reactor; a differential algebraic approach [J]. Chemical Product and Process Modeling, 2009, 2: 10 2689.
  • 5Wang IJ X. Adaptive Fuzzy Systems and Control: Design and Stability [M]. Englewood Cliffs, NJ: Prentice- Hall, 1994.
  • 6Park J, Sandberg I W. Universal approximation using radial-basis-function network [J]. Neural Computation, 1991, 3:246 -257.
  • 7Ge S S, Hang C C, Zhang T. Nonlinear adaptive control using neural networks and its application to CSTR systems [J]. JournalofProcess Control, 1999, 9:313- 323.
  • 8褚燕彬,曹柳林,王晶.利用组合B样条神经网络实现对间歇反应过程的动态建模[J].化工学报,2011,62(S1):157-162. 被引量:2
  • 9Zhang T, Guay M. Adaptive control of uncertain continuously stirred tank reactors with unknown actuator nonlinearities [J]. ISA Transactions, 2005, 44:55-68.
  • 10Salehi S, Shahrokhi M. Adaptive fuzzy approach for H temperature tracking control of continuous stirred tank reactors[J]. Control Engineering Practice, 2008, 16: 1101- 1108.

二级参考文献31

  • 1张杰,NguyenJerome,熊智华.基于时变偏扰模型的问歇过程迭代学习控制[J].清华大学学报(自然科学版),2008,48(S2):1771-1774. 被引量:6
  • 2乐艳,李少远.大范围工况热工过程系统的多模型预测控制[J].工业仪表与自动化装置,2004(5):31-33. 被引量:1
  • 3韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490. 被引量:229
  • 4李晓理,康运锋,胡广大.多模型自适应控制算法的性能分析[J].系统仿真学报,2007,19(4):815-819. 被引量:14
  • 5K S Narendra, J Balakrishan. Improving transient response of adaptive control system using multiple model and switching [J]. IEEE Trans on Automatic Control (S0018-9286), 1994, 39(9): 1861-1866.
  • 6K S Narendra, C Xiang. Adaptive control of discrete-time systems using multiple models [J]. IEEE Trans on Automatic Control (S0018- 9286), 2000, 45(9): 1669-1686.
  • 7P Zhivoglyadov, R H Middleton, M Y Fu. Localization based switching adaptive control for time-varying discrete systems [J]. IEEE Trans on Automatic Control (S0018-9286), 2000, 45(4): 752-755.
  • 8K S Narendra, J Balakrishan. Adaptive control using multiple model [J]. IEEE Trans on Automatic Control (S0018-9286), 1997, 42(2): 171 - 187.
  • 9李晓理,王伟.多模型自适应控制[M].北京:科学出版社,2001.
  • 10Danielle Dougherty, Doug Cooper. A practical multiple model adaptive strategy for multivariable model predictive control [J]. Control Engineering Practice, 2003, 11 (6): 649-664.

共引文献12

同被引文献70

引证文献12

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部