期刊文献+

基于数据缩减和存储过程的ID3算法改进设计

The Design to Improvement of ID3 Algorithm Based on Data Reduction and Stored Procedure
下载PDF
导出
摘要 ID3算法在分类数据挖掘中应用广泛,但其在对大规模训练样本集进行挖掘时,占用主存空间较大,且执行效率不高.运用属性约简和分组计数方法对训练样本集进行数据缩减,得到数据规模较小的新训练样本集,然后再运用ID3算法对新训练样本集进行分类挖掘.整个执行过程全部使用现代数据库技术和存储过程编程加以实现.实验表明,通过改进设计提高了ID3算法的执行效率,增强了算法的扩展性. ID3 Algorithm is widely used in classified data mining, but if it is used in the mining of large - scale training sample set, too much main - memory space will be occupied, which results in low execution efficiency. The attribute reduction method and classified counting method to reduce data in the training sample set and a ne,s one with smaller scale are used, and then [D3 Algorithm in the classification mining of the new training sample set is applied. The whole execution process is realized through modem database technology and procedure programming totally is stored. The experiment shows that the design enhances the execution efficiency of ID3 Algorithm is improved and its application range is extended.
作者 韩成勇
出处 《哈尔滨师范大学自然科学学报》 CAS 2013年第4期51-54,共4页 Natural Science Journal of Harbin Normal University
基金 安徽省教育厅教学研究资助项目(2012JYXM762) 安徽省教育厅自然科学研究资助项目(KJ2013Z090)
关键词 ID3算法 粗糙集 属性约简 分组计数 数据缩减 存储过程 ID3 algorithm Rough set Attribute reduction Group counting Data reduction Stored procedure
  • 相关文献

参考文献11

二级参考文献66

  • 1刘鹏,姚正,尹俊杰.一种有效的C4.5改进模型[J].清华大学学报(自然科学版),2006,46(z1):996-1001. 被引量:28
  • 2王熙照,游自英.决策树简化(剪切)方法综述[J].计算机工程与应用,2004,40(27):66-69. 被引量:13
  • 3倪春鹏,王正欧.一种新型决策树属性选择标准[J].武汉科技大学学报,2004,27(4):437-440. 被引量:10
  • 4王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 5Elouedi Z,Mellouli K,Smets P.Belief decision trees:The oretical foundations[J].International Journal of Approxi-mate Reasoning,2001 (28):91-124.
  • 6Carmela C,Francesco M,Roberta S.A statistical approach to growing a reliable honest tree[J].Computational Statistics and Data Analysisi, 2002(38) :285-299.
  • 7Hsu C W,Ln C J.A comparison of methods for multi-class support vector machines[J].IEEE Transaction on Neural Network,2002, 13(2) :415-425.
  • 8Platt J C,Shaweyaylor J.Large margin DAGs for multiclass elassification[C]//Advances in Neural Information Processing Systems, 2000 : 547-553.
  • 9Quinlan J R.Bagging, boosting, andC4.5[C]//Proc 13th International Conference Artificial Intelligence,Porland,One,1996:386-395.
  • 10Quinlan J R.Induction of decision trees[J].Machine Learning, 1986, 1(1):81-106.

共引文献530

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部