摘要
基于双相介质BISQ模型弹性波方程数值模拟来研究储层弹性波响应特征,对于储层识别和油气检测具有重要意义。本文从Taylor级数展开式出发,推导出了交错网格一阶空间导数的任意偶数阶精度展开式和相应差分系数计算式;从本构方程和运动方程推导出了BISQ模型双相介质一阶双曲型应力-速度弹性波方程交错网格任意偶数阶精度差分格式以及推导出二维双相各向同性介质完全匹配吸收层(PML)边界条件公式和相应的高阶交错网格差分格式。通过数值模拟研究表明,该方法边界吸收效果好,稳定性好,能够高精度模拟双相介质中地震弹性波场,且计算效率也高。
For identifying reservoirs and detecting oil-gas, it is important to study the elastic wave responsive characteristics in reservoirs using the elastic wave propagation simulation based on BISQ model in two-phase media.The paper presents the any even-order accurate difference scheme of 2-D one-order stress-velocity elastic wave equation and its stability condition in two-phase homogeneous media based on BISQ model. And we derived a perfectly matched absorbing layer (PML) boundary condition and its staggered-grid any even-order difference scheme. The results of numerical modeling indicate that this method can result high precision of modeling, and high efficiency of calculation. This boundary condition brings good absorbing effect.
出处
《应用声学》
CSCD
北大核心
2013年第6期425-432,共8页
Journal of Applied Acoustics
基金
国家科技型中小企业技术创新基金(12C26211100066)
关键词
BISQ模型
弹性波场
交错网格
高阶有限差分法
BISQ model, Elastic wave-fields, Staggered-grid, High-order finite difference method