期刊文献+

一种反射型全光纤氢气传感器的设计 被引量:3

Design of Reflective All-Fiber Hydrogen Sensor
原文传递
导出
摘要 介绍了一种基于光子晶体光纤(PCF)干涉仪的新型氢气传感器。该传感器采用反射式光路设计,在氢气传感单元中引入一段PCF。该PCF的一端以及一部分包层外壁在真空条件下蒸镀了一层金属钯膜,另一端接入光路,构成一套全光纤氢气传感系统。实验中记录了氢气浓度(体积分数)从0到5%变化时传感单元对应的干涉谐振波长的变化,谐振波长最大的移动可达1.2nm,相比大多数基于布拉格光栅的光纤氢气传感器,相同条件下灵敏度有很大的提高。整套传感系统未引入任何分立的光学元件,在兼顾了全光纤光路的条件下,实现了较高的检测灵敏度。 A new method by introducing a photonic crystal fiber (PCF) inline interferometer for hydrogen sensing is demonstrated. The sensing unit contains a piece of PCF, constituting a reflection-type hydrogen sensing system. One end and the outer face of the PCF are plated with a thin palladium film under vacuum conditions, while the other end connects to the optical path. Therefore, a set of all-fiber hydrogen sensor is accomplished. Hydrogen concentration from 0 to 5% is detected in the experiment and the related interferometric resonant wavelength shift is recorded. The maximum wavelength shift is over 1.2 nm. Compared with hydrogen sensors based on fiber Bragg grating, the sensitivity of the experiment has great improvement. The whole system not only has an all-fiber optical path without any bulk-optic components, but also owns a high sensitivity.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第11期36-40,共5页 Acta Optica Sinica
基金 国家自然科学基金面上项目(11074117) 国家973计划(2010CB327803)
关键词 传感器 光子晶体光纤 反射型 全光纤 氢气传感器 sensors photonic crystal fiber reflective all-fiber hydrogen sensor
  • 相关文献

参考文献19

  • 1K Luongo, A Sine, S Bhansali. Development of a highly sensitive porous Si-based hydrogen sensor using Pd nano structures [J]. Sens Actuators B, 2005, 111-112= 125--129.
  • 2B Xie, L L Liu, X Peng, et al.. Optimizing hydrogen sensing behavior by controlling the coverage in Pd nanoparticle films [J]. J Phys Chem C, 2011, 115(32): 16161--16166.
  • 3D J Sirbuly, S E L6tant, T V Ratto. Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane palladium nanocomposites [J]. Adv Mater, 2008, 20(24): 724--4727.
  • 4Z Zhao, Y Sevryugina, M A Carpenter, et aL.. All-optical hydrogen-sensing materials based on tailored palladium alloy thin films [J]. AnalChem, 2004, 76(21): 6321--6326.
  • 5D Y Wang, Y M Wang, J M Gong, et al.. Fully distributed fiber optic hydrogen sensing using acoustically induced long- period grating [J]. IEEE Photon Technol Lett, 2011, 23(11): 733--735.
  • 6S Sumida, S Okazaki, S Asakura, et al.. Distributed hydrogen determination with fiber optic sensor [J]. Sens Actuators B, 2005, 108(1-2) 508--514.
  • 7M A Butler. Fiber optic sensor for hydrogen concentrations near the explosive limit [J]. J Electrochem Sol, 1991, 138(9) : L46-- L47.
  • 8K Schroeder, W Ecke, R Willsch. Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer [J]. Opt Laser Eng, 2009, 47 (10): 1018--1022.
  • 9C Perrotton, R J Westerwaal, N Javahiraly, et al.. A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmonresonance[J]. Opt Express, 2013, 21(1): 382--390.
  • 10A Trouillet, E Marin, C Veillas. Fibre gratings for hydrogen sensing[J]. MeasSciTechnol, 2006, 17(5) 1124--1128.

同被引文献21

  • 1Shen Yang, Hao Sun, Liutong Yuan, et al.. Refractive index and temperature sensor based on cladding-mode Bragg grating excited by abrupt taper interferometer[J]. Chin Opt Lett, 2013, 11 (12): 120604.
  • 2S Michaelis, J Wegener, R Robelek. Label-free monitoring of cell-based assays: Combining impedance analysis with 31~1~ tot muhiparametric cell profiling[J]. Biosens Bioelectron, 2013, 49: 63-70.
  • 3K D Kihm, S Cheon, J S Park, et al.. Surface plasmon resonance (SPR) reflectance imaging: Far-field recognition of near-field phenomena[J]. Opt Laser Eng, 2012, 50(1): 64-73.
  • 4W T Zhang, P D Han, A D Lan, et al.. Defect modes tuning of one-dimensional photonie erystals with lithium niobate and silver material defect[J]. Physica E, 2012, 44(1): 813-815.
  • 5W Su, G G Zheng, X Y Li. A resonance wavelength easy tunable photonic crystal biosensor using surface plasmon resonance effect [J]. Optik, 2013, 124(21): 5161-5163.
  • 6M Rahmat, W Maulina, E Rustami, et al.. Performance in real condition of photonic crystal sensor based NO2 gas monitoring system [J]. Atmos Environ, 2013,79: 480-485.
  • 7H J Kim, Y Y Kim, K W Lee, et al.. A distributed Bragg reflector porous silicon layer for optical interferometric sensing of organic vapor[J]. Sensors and Actuators B: Chemical, 2011,155(2): 673-678.
  • 8H Y Zhang, Z H Jia, X Y Lv, et al.. Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection[J]. Biosens Bioelectron, 2013, 44: 89-94.
  • 9S Shahriari, S Shahriari. Predicting ionic liquid based aqueous biphasic systems with artificial neural networks[J]. J Mol Liq, 2014, 197: 65-72.
  • 10C Ren, N An, J Z Wang, et al.. Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting[J]. Knowl-based Syst, 2014, 56: 226-239.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部