期刊文献+

基于改进遗传规划算法的非线性集成预测新方法 被引量:4

A NEW NONLINEAR ENSEMBLE FORECASTING METHOD BASED ON AN IMPROVED GENETIC PROGRAMMING
原文传递
导出
摘要 首次将遗传规划算法(GP)应用于集成预测问题的研究,使用最小二乘估计算法(LSE)对经典遗传规划算法进行改进,提出了一种基于"遗传规划&最小二乘"算法(GPLSE)的非线性集成预测方法.使用五种不同的模型预测2011年1月-2012年4月青岛港集装箱吞吐量.结果表明,基于GP-LSE的非线性集成预测方法在预测数值准确度和方向准确度两个维度都显著优于其他预测模型. In this paper, we apply to the genetic programming algorithm (GP) for the ensemble forecast problem, to improve the standard genetic programming algorithm by using least square estimation algorithm (LSE), and propose a nonlinear ensemble forecasting model based on 'genetic programming & least square estimation' algorithm (GP-LSE). Five different forecasting models are used to predict throughputs of Port of Qingdao during the period from January 2011 to April 2012. Empirical results show that the nonlinear ensemble forecasting model based on GP-LSE significantly outperforms other competitive forecasting models, in terms of both the level and the direction.
出处 《系统科学与数学》 CSCD 北大核心 2013年第11期1332-1344,共13页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(71171011 711710112) 中央高校基本科研业务费专项资金(ZZ1133)资助课题
关键词 非线性集成预测 遗传规划 集装箱吞吐量 Nonlinear ensemble forecast genetic programming container through-put.
  • 相关文献

参考文献32

  • 1Bates J M, Granger C W J. The combination of forecasts. Operations Research Quarterly, 1969, 20: 451-468.
  • 2Newbold P, Granger C W J. Experience with forecasting univariate time series and the combi- nation of forecasts. Journal of the Royal Statistical Society: Series A, 1974, 137: 131-165.
  • 3Granger C W J, Ramanathan R. Improved methods of forecasting. Journal of Forecasting, 1984, 3: 197-204.
  • 4Clemen R T, Winkler R L. Combining economic forecasts. Journal of Business and Economic Statistics, 1986, 4: 39-46.
  • 5Nelson C R. Applied Time Series Analysis for Managerial Forecasting. San Francisco: Holden-day, 1973.
  • 6Gupta S, Wilton P C. Combination of forecasts: An extension. Management Science, 1987, 33: 356-372.
  • 7Yang Y H. Combining forecasting procedures some theoretical results. Econometric Theory, 2004, 20: 176-222.
  • 8Yu L A, Wang S Y, Lai K K. A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates. Computers & Operations Research, 2004, 32: 2523-2541.
  • 9Yu L A, Wang S Y, Lai K K. A hybrid econometric-AI ensemble learning model for Chinese foreign trade prediction. Lecture Notes in Computer Science, 2007, 4490: 106-113.
  • 10Winkler R L, Makridakis S. The combination of forecasts. Journal of the Royal Statistical Society: Series A, 1983, 146: 150-157.

同被引文献53

  • 1董洁霜,潘杰,周亦威.基于SARIMA模型的上海港集装箱吞吐量预测[J].中国水运(下半月),2022,22(1):16-18. 被引量:3
  • 2陈宁,朱美琪,余珍文.基于对数二次指数平滑的港口吞吐量预测[J].武汉理工大学学报,2005,27(9):77-79. 被引量:31
  • 3Cay S.horstmann,Garyeomell[美].JAVA核心技术(卷1)[M].叶乃文,等译.北京:机械工业出版社,2008:613-681.
  • 4Khashei Mehdi,Rafiei Farimah Mokhatab,Bijari Mehdi.Hybrid Fuzzy Auto-Regressive Integrated Moving Average Model for Forecasting the Foreign Exchange Markets[J].International Journal of Computational Intelligence Systems,2013,6(5):954-968.
  • 5Sun Bin,Li Tieke.Forecasting and Identification of Stock Market based on Modified RBF Neural Network[C]//Proceedings of 2010 IEEE the17th International Conference on Industrial Engineering and Engineering Management,Xiamen,IEEE,2010(1):424-427.
  • 6Kazem Ahmad,Sharifi Ebrahim,Hussain Farookh Khadeer.Support vector regression with chaos-based firefly algorithm for stock market price forecasting[J].Applied Soft Computing,2013,13(2):947-958.
  • 7Mirchandani Bhisham,Shah Cinjal,Nagarsheth Kaushal.Stock Market Trend Prediction Marquardt Neural Network Optimized by Genetic Algorithm[C]//Phuket:4th International Conference on Software Technology and Engineering,2012:521-527.
  • 8李擎,张超,徐银梅,等.基于专用遗传算法和改进粒子群算法的移动机器人路径规划[C]//安徽:第三十一届中国控制会议论文集D卷,2012:830-838.
  • 9李萍,曾令可,税安泽,金雪莉,刘艳春,王慧.基于MATLAB的BP神经网络预测系统的设计[J].计算机应用与软件,2008,25(4):149-150. 被引量:182
  • 10李志生.最优交易策略问题的动态求解方法[J].中国管理科学,2008,16(3):102-108. 被引量:2

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部