期刊文献+

无线传感网络数据缺失下的通信优化仿真 被引量:9

Simulation on Communication Optimization of Wireless Sensor Networks under Missing Data
下载PDF
导出
摘要 研究无线传感网络在数据缺失情况下的准确通信问题。由于传感器节点电源能量有限且不可再生,当节点能量较低时,工作状态不稳定,造成发送数据失败,从而导致数据缺失,传统的通信算法对数据缺失的情况很难有效预测,无法形成有效的补偿性判断,造成通信效果差。提出了一种传感数据融合算法的无线传感网络通信优化方法。运用一种节点自适应方法,获取无线传感网络通信的目标函数,引入节点数据适应度计算方法,为通信服务提供准确的依据。运用蚁群融合算法,在数据缺失的情况下,完成节点差异数据融合过程,弥补缺失造成的误差。实验结果表明,运用改进后的算法能够提高无线传感网络数据缺失情况下通信的准确性,极大的降低了通信的误码率。 In this paper, the accurate communication problem of wireless sensor network in the case of missing data was studied. Since the energy supply of sensor nodes is limited and non - renewable, when the energy of node is low, the working status is unstable, resulting in failure to send data and data loss. It is difficult using traditional communication algorithm to predict the situation of missing data. In this paper, we proposed a communications opti- mization method for wireless sensor network based on sensor data fusion algorithm. Firstly, a node adaptive method was employed to get the objective function of wireless sensor network communication, and introduce the node data fit- ness calculation method, in order to provide an accurate basis for communication services. Then, the use of ant colo- ny algorithm, in the case of missing data, can complete the data fusion of node difference to make up the error caused by data missing. Experimental results show that the use of the algorithm can improve the communication accuracy of wireless sensor network in data loss situations, which greatly reduces the communication error rate.
出处 《计算机仿真》 CSCD 北大核心 2013年第12期249-252,共4页 Computer Simulation
关键词 无线传感网络 数据缺失 通信优化 蚁群算法 Wireless sensor network (WSN) Data loss Communication optimization Ant colony algorithm
  • 相关文献

参考文献9

二级参考文献57

  • 1李钷,李敏,刘涤尘.基于改进回归法的电力负荷预测[J].电网技术,2006,30(1):99-104. 被引量:55
  • 2Goldberg D.E.Genetic algorithms in search,optimization and machine learning,Addison Wesley Publishing Reading,Mass.,1989.
  • 3Srinivas M.,Patnaik L.M.,Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms,IEEE Transaction System,Man and Cybernetics.1994,24(4):656 ~667.
  • 4[1]Akyildiz I F, Su W,Sankarasubramaniam Y,Cayirci E. A survey on sensor networks. IEEE Communications Magazine, 2002, 40(8) :102~114
  • 5[2]Heinzelman W R,Chandrakasan A,Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks.In: Proc. of the33rd Intl. Conf. on System Sciences (HICSS '00), Jan. 2000. 1~10
  • 6[3]Intanagonwiwat C,Govindan R,Estrin D. Directed diffusion: A scalable and robust communication paradigm for sensor networks. In :Proc. of the Sixth Annual ACM/IEEE Intl. Conf. on Mobile Computing and Networking (Mobicom'2000), Boston,Massachusetts, August 2000
  • 7[4]Manjeshwar,Agarwal D P. TEEN: a routing protocol for enhanced efficiency in wireless sensor networks. In: 1st Intl. Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing, April 2001
  • 8[5]Lindsey S,Raghavendra C S, Sivalingam K. Data Gathering in Sensor Networks using the Energy * Delay Metric. In: Proc. of the IPDPS Workshop on Issues in Wireless Networks and Mobile Computing, 2001
  • 9[6]Heidemann J, et al. Building efficient wireless sensor networks with low-level naming. In : Proc. of the ACM Symposium on Operating Systems Principles, Banff, Canada, Oct. 2001
  • 10[7]Intanagonwiwat C,et al. Impact of network density on data aggregation in wireless sensor networks: [Technical Report 01-750].University of Southern California, Nov. 2001

共引文献189

同被引文献30

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部