期刊文献+

一种新的基于MMC和LSE的监督流形学习算法 被引量:8

A New Supervised Manifold Learning Algorithm Based on MMC and LSE
下载PDF
导出
摘要 针对局部样条嵌入算法(Local spline embedding,LSE)存在样本外点学习和无监督模式学习问题,本文提出了一种新颖的正交局部样条判别投影算法(O-LSDP).该算法通过引入明确的线性映射关系,构建平移缩放模型,以及正交化特征子空间,从而使该算法能够应用于模式分类问题并显著改善了算法的分类识别能力.在标准人脸数据库和植物叶片数据库上的实验结果验证了该算法的有效性与可行性. In order to circumvent the two major shortcomings of the original local spline embedding (LSE) algorithm, i.e., out-of-sample and unsupervised learning, we proposed a novel feature extraction algorithm called orthogonal local spline discriminant projection (O-LSDP). By introducing an explicit linear mapping, constructing different translation and resealing models for different classes as well as orthogonality feature subspace, the O-LSDP not only inherits the advantages of LSE which uses local tangent space as a representation of the local geometry so as to preserve the locM structure, but also makes full use of class information and orthogonal subspace to significantly improve the discriminant power. Experimental results on standard face databases and plant leaf data set demonstrate the feasibility and effectiveness of the proposed algorithm.
出处 《自动化学报》 EI CSCD 北大核心 2013年第12期2077-2089,共13页 Acta Automatica Sinica
基金 国家自然科学基金(61272333,61273302,61005010) 安徽省自然科学基金(1208085MF94,1208085MF98,1308085MF84)资助~~
关键词 局部样条嵌入 最大边缘准则 特征提取 流形学习 Local spline embedding (LSE), maximum margin criterion, feature extraction, manifold learning
  • 相关文献

参考文献1

二级参考文献20

  • 1詹德川,周志华.基于流形学习的多示例回归算法[J].计算机学报,2006,29(11):1948-1955. 被引量:16
  • 2胡昭华,樊鑫,梁德群,宋耀良.基于双向非线性学习的轨迹跟踪和识别[J].计算机学报,2007,30(8):1389-1397. 被引量:5
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313:504 -507.
  • 4Bengio Y, Paiement J F, Vincent P, Delalleau O. Out-of- sample extensions for LLE, Isomap, MDS, Eigenmaps, and spectral clustering//Proceedings of the Advances in Neural Information Processing Systems. Whistler, Canada, 2004:16.
  • 5Silva V D, Tenenbaum J B. Global versus local methods in nonlinear dimensionality reduction. Neural Information Processing Systems, 2003, 15:705-712.
  • 6Silva V D, Tenenbaum J B. Sparse multidimensional sealing using landmark points. Stanford University, Stanford, CA, USA: Technical Report, 2004.
  • 7Saul L K, Rowels S T. Think globally, fit locally : Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 2003, 4:119-155.
  • 8He X, Niyogi P. Locality preserving projeetions//Proceedings of the Advances in Neural Information Processing Systems. Cambridge, UK, 2003:16.
  • 9Zhang J P, Stan Z L. Adaptive nonlinear auto-associative modeling through manifold learning//Ho T B, Cheung D, Liu H eds. PAKDD. LNAI 3518. Berlin Heidelberg: Springer-Verlag, 2005:599-604.
  • 10Donoho D L, Grimes C E. When does Isomap recover the natural parameterization of families of articulated images? Department of Statistics, Stanford University, Stanford, CA, USA: Technical Report 2002-27, 2002.

共引文献19

同被引文献84

  • 1李锋,田大庆,王家序,杨荣松.基于有监督增量式局部线性嵌入的故障辨识[J].振动与冲击,2013,32(23):82-88. 被引量:7
  • 2侯越先,吴静怡,何丕廉.基于局域主方向重构的适应性非线性维数约减[J].计算机应用,2006,26(4):895-897. 被引量:6
  • 3赵旭,阎威武,邵惠鹤.基于核Fisher判别分析方法的非线性统计过程监控与故障诊断[J].化工学报,2007,58(4):951-956. 被引量:17
  • 4孟德宇,徐宗本,戴明伟.一种新的有监督流形学习方法[J].计算机研究与发展,2007,44(12):2072-2077. 被引量:15
  • 5Manish M, Henry, Joe Q S, et al.Multivariate process monitoring and fault diagnosis by multi-scale PCA[J].Computers and Chemical Engineering, 2002,26(9):1281- 1293.
  • 6Kim T K,Kittler J,Cipolla R.On-line learning of mutually orthogonal subspaces for face recognition by image sets[J].IEEE Transactions on Signal Processing,2010,19(4):1067-1074.
  • 7Shakhnarovich G,Fisher J W,Darrel T.Face recognition from long-term observations[C]//Proceedings of European Conference on Computer Vision(ECCV),2002,3:851-868.
  • 8Arandjelovic O,Shakhnarovich G,Fisher J,et al.Face recognition with image sets using manifold density divergence[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition(CVPR),2005,1:581-588.
  • 9Cardinaux F,Sanderson C,Bengio S.User authentication via adapted statistical models of face images[J].IEEE Transactions on Signal Processing,2006,54(1):361-373.
  • 10Yamaguchi O,Fukui K,Maeda K,et al.Face recognition using temporal image sequence[C]//Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition,1998:318-323.

引证文献8

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部