期刊文献+

基于改进的加权RGB特征的跟踪算法

Improved weighted RGB feature space for target tracking
下载PDF
导出
摘要 为解决视觉跟踪中线性RGB组合特征的权值仅使用整数这一问题,设计了一种将权值范围扩大到实数域的特征及其选择算法。在线性RGB组合特征的权值向量空间中,能够最有效地区分前景和背景的权值向量就是能够用来跟踪的最佳权值向量。将线性RGB的组合扩展至RGB的二次组合,使用逻辑回归对前景和背景像素进行分类,并利用加权迭代最小二乘法对逻辑回归求得的权值向量进行迭代,得到最有效区分前景和背景的权值向量,使用特征更新策略对目标权值向量进行不断更新。实验结果表明,改进的方法结合Means Shift可有效的跟踪运动目标。 To enlarge the weight of linear combination of RGB features from only integers to the field of real numbers, an improved discriminative RGB feature space and related feature selection method are presented. Based on experience, in the weighted RGB feature space, the features that best discriminate between object and background are also the best for tracking the object. First, the linear combination of RGB is enlarged to quadratic combination of RGB. Then, the logistic regression is applied to classify the object and the background pixel, and the iteratively re-weighted least squares (IRLS) is used to ensure that the method can discriminate between object and background efficiently. At last, feature update method ensures the tracking process proceeds continuously. Experiment results demonstrate that this method combined with the Mean Shift tracking algorithm can figure out the object more effectively.
作者 孙先先
出处 《计算机工程与设计》 CSCD 北大核心 2013年第12期4284-4288,共5页 Computer Engineering and Design
关键词 加权RGB特征 目标跟踪 逻辑回归 最小二乘法 特征更新 weighted RGB feature target tracking logistic regression iteratively re-weighted least squares feature update
  • 相关文献

参考文献11

  • 1Robert T Collins,LIU Vanxi.On-line selection of discrimina-tive tracking features[J].IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2005,27(10):1631-1643.
  • 2贾静平,张飞舟,柴艳妹.Adaboost目标跟踪算法[J].模式识别与人工智能,2009,22(3):475-480. 被引量:8
  • 3PA Gutierrez,C Hervas-Martinez,FJ Martiinez-Estudillo.Lo-gistic regression by means of evolutionary radial basis function[J].Neural Networks,2011,22(2):246-263.
  • 4LI,Jun,JM Bioucas-Dias,Plaza A.Semisupervised hyperspectralimage classification using soft sparse multinomial lc^istic r^ression[J].Geoscience and Remote Sensing Letters,2013,10(2):318-322.
  • 5彭凯,秦永彬,许道云.基于逻辑回归的客户稳定度建模[J].计算机工程,2011,37(9):12-15. 被引量:7
  • 6Qiao D,GKH Pang.An iteratively reweighted least square al-gorithm for RSS-based sensor network localization[C]// Bei-jing:Mechatronics and Automation? 2011:1085-1092.
  • 7Ramani S,Fessler J A.An accelerated iterative reweighted leastsquares algorithm for compressed sensing MRI[C]// Biome-dical Imaging:From Nano to Macro.2010; 257-260.
  • 8Geng Y,Shan C,Hao P.Square loss based regularized Ida forface recognition using image sets[C]// Computer Vision andPattern Recognition? 2009:99-106.
  • 9Iiu Z,Zhou J,Jin Z.Face recconition based on illumination adaptiveLDA[C]//Pattern Recognition,2010:894-897.
  • 10Hidayat E,Fajrian N A,Muda A K,et al.A comparativestudy of feature extraction using PCA and LDA for face recog-nition[C]// Information Assurance and Security,2011:354-359.

二级参考文献17

  • 1胡健萍.电信企业客户忠诚度模型的构建[J].科技经济市场,2008(7):23-24. 被引量:2
  • 2钱锋,徐麟文.基于数据挖掘的客户忠诚度提升[J].商场现代化,2006(09S):46-47. 被引量:4
  • 3Shi Jianbo, Tomasi C. Good Features to Track//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Seattle, USA, 1994:593 -600.
  • 4Han Bohyung, Davis L. Object Tracking by Adaptive Feature Extraction// Proc of the International Conference on Image Processing. Singapore, Singapore, 2004,III: 1501-1504.
  • 5Stem H, Efros B. Adaptive Color Space Switching for Face Tracking in Multi-Colored Lighting Environments//Proc of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA, 2002 : 249 - 254.
  • 6Avidan S. Subset Selection for Efficient SVM Tracking// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, I : 85 -92.
  • 7Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000, II : 142-149.
  • 8Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (5):564 -577.
  • 9Jia Jingping, Zhao Rongchun. Tracking of Objects in Image Sequences Using Bandwidth Matrix Mean Shift Algorithm // Proc of the 7th International Conference on Signal Processing. Beijing, China, 2004, III: 918-921.
  • 10Liu T L, Chen H T. Real-Time Tracking Using Trust-Region Methods. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(3) : 397 -402.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部