期刊文献+

薄壁管材矫直曲率半径数学模型及其验证 被引量:16

The Straightening Curvature-radius Model for the Thin-walled Tube and It's Validation
下载PDF
导出
摘要 矫直曲率半径作为矫直工序的核心工艺参数,对管材特别是薄壁管材的矫直精度起到决定性作用。而目前在薄壁管材的矫直生产中,仍然沿用经典理论的数据图表,结合人工经验和反复试矫对其进行估定,亟待建立精确的矫直曲率半径数学模型以指导生产,为此基于薄壳构件弹塑性理论及其相关假设建立了针对薄壁管材矫直变形区的应力应变关系模型,进而对变形区弯曲力矩进行解析,运用经典卸载规律建立薄壁管材矫直曲率半径的数学模型方程,同时给出求解方法。通过有限元仿真分析和现场试验,并与经典矫直理论的计算结果进行对比,证明该模型在处理薄壁管材矫直问题时是正确和有效的,为继续深入研究矫直相关工艺参数的合理设置、完善薄壁管材矫直理论体系奠定基础。 The straightening curvature-radius as the main straightening technical parameter, decides the precision for straightening tubes especially for thin-walled tubes, however, thin-walled tube straightening is always viewed as a craft, the work being largely carried out based on the classic experiential data and chart by skilled labourers, whose art is based on long experience and experiments, the precise mathematical model of the straightening curvature-radius is immediately necessary for straightening the thin-walled tube. Therefore, a new stress-strain model of the deformation zone firstly is presented based on the elastic-plastic theory and relevant hypothesis of the thin-walled member for straightening thin-walled tube, and then the straightening moment is obtained subsequently, finally the model of the straightening curvature-radius is presented using the classic unloading rule, and it is also shown how to solve synchronously. In order to certify whether it is correct, some dynamic simulations are carried out by FEA and the local experiments. The results and the comparisons with the classic theoretical method have shown that the model is correct and suitable for straightening thin-walled tube, which can also provide the basis for optimizing straightening technical parameters and completing the theory of thin-walled tube straightening.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第21期160-167,共8页 Journal of Mechanical Engineering
基金 高等学校博士学科点专项科研基金资助项目(200801451013)
关键词 薄壁管材 矫直曲率半径 数学模型 Thin-walled tube Straightening curvature-radius Mathematical model
  • 相关文献

参考文献13

  • 1张子骞,张柏森,杨会林,颜云辉.管棒材等曲率矫直力模型可视化设计[J].东北大学学报(自然科学版),2012,33(3):409-413. 被引量:13
  • 2张子骞,杨会林,颜云辉,董德威.薄壁管矫直过程中性层位移解析[J].冶金设备,2012(3):1-6. 被引量:2
  • 3CHEN Min,JIANG Xiaomin,ZHAO Zuxin,HUANG Xiaobo.Innovation in the Computing System of Straightening Force[J].Chinese Journal of Mechanical Engineering,2010,23(1):115-121. 被引量:6
  • 4YI Yali, JIN Herong. Three roller curvature scotch straightening mechanism study and system design[J]. Energy Procedia, 2012, 16: 38-44.
  • 5YU Tongxi, ZHANG Liangchi. Plastic bending: Theory and application[M]. Singapore : World Scientific Publishing Co. Pte. Ltd., 1996.
  • 6TANG N C. Plastic-deformation analysis in tube bending[J]. International Journal of Pressure Vessels and Piping, 2000, 77(12): 751-759.
  • 7ZHAN Mei, YANG He, HUANG Liang, et al. Springback analysis of numerical control bending of thin-walled tube using numerical-analytic method[J]. Journal of Materials Processing Technology, 2006, 177(3): 197-201.
  • 8Da-xin E Hua-hui He Xiao-yi Liu Ru-xin Ning.Spring-back deformation in tube bending[J].International Journal of Minerals,Metallurgy and Materials,2009,16(2):177-183. 被引量:10
  • 9HOULIARA S, KARAMANOS S A. Buckling and post-buckling of long pressurized elastic thin-walled tubes under in-plane bending[J]. International Journal of Non-Linear Mechanics, 2006, 41(4): 491-511.
  • 10HALLAI J F, KYRIAKIDES S. On the effect of Liiders bands on the bending of steel tubes, part I: Experiments[J]. International Journal of Solids and Structures, 2011, 48(24): 3275-3284.

二级参考文献20

共引文献32

同被引文献100

引证文献16

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部