期刊文献+

基于非均匀测量矩阵的超分辨率全向图像重建 被引量:3

Super-resolution omnidirectional image reconstruction based on non-uniform measurement matrix
原文传递
导出
摘要 为解决折反射全向成像空间分辨率低和分布不均匀的问题,将压缩感知(CS)理论引入折反射全向成像系统。基于单位球面模型分析了折反射全向成像系统的空间分辨率分布规律,根据重构信号的均方误差(MSE)与稀疏度、测量次数的关系,设计了基于全向图像分辨率的非均匀测量矩阵;通过设计的测量矩阵,将较多的传感资源分配给全向图像内环,而将较少的传感资源分配给外环,从而对经过镜面反射的场景进行采集,得到观测场景的非均匀压缩采样;最后通过线性Bregman迭代算法重构出分辨率均匀的高分辨率图像。实验结果表明,本文方法得到的图像空间分辨率更高且分布更为均匀,有效改善了全向成像的分辨率问题。 To solve the problem of low and non-uniform resolution in catadioptric omnidirectional imaging, the theory of compressive sensing (CS) is applied to research the catadioptric omnidirectional imaging systems. The resolution distribution of eatadioptric omnidirectional imaging systems is analyzed based on the unit sphere model. According to the relation between mean square error (MSE) and sparsity,measurement number,a non-uniform measurement matrix, which is based on the distribution of the imaging systemPs resolution, is designed in this paper. Based on the designed measurement matrix,it allocates more sensing resources to inner parts but fewer to outer parts of the catadioptric omnidirectional image. This scheme takes the resolution of omnidirectional image into account, which is increased from the center to the periphery. The non-uniform compressed samples of the observed scene are captured from the ray light which is reflected from the mirror. The linear Bregrnan iteration is employed as the reconstruction algorithm to obtain the high and uniform resolution image. The algorithm is tested on synthetic and realistic images. Experimental results show that the proposed method is feasible and effective. The recovered image has higher and much more uniform resolution than that reconstructed by traditional method.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第12期2421-2429,共9页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61175006 61175015 61275016 61271438)资助项目
关键词 折反射全向成像 压缩感知(CS) 分辨率问题 超分辨率重建 测量矩阵 catadioptric omnidirectional imaging compressed sensing (CS) resolution problem super- resolution reconstruction measurement matrix
  • 相关文献

参考文献8

二级参考文献198

共引文献785

同被引文献37

  • 1彭启民,贾云得.基于小波变换的全向图像分辨率增强方法[J].电子学报,2004,32(11):1875-1879. 被引量:9
  • 2Cheng C,Yu J C,Ohang C C. A forgery detection algo-rithm for exemplar-based inpainting images using multi- region relation[J]. Image and Vision Computing, 2013,31 (1) :57-71.
  • 3WANG Miao-hui, YAN Bo, Ngan King Ngi. An efficient framework for image/video inpainting [J]. Signal Pro- cessing=Image Communication,2013,28(7) :753-762.
  • 4WANG Jing, LUKe, PAN Daru. Robust object removal with an exemplar-based image inpainting approach[J]. Neurocomputing, 2014,123 (10) : 150-155.
  • 5Plumbley M, Blumensath T, Daudet L, et al, Sparse repre- sentations in audio and music=from coding to source sep- aration[A]. Proc. of the IEEE[C]. 2010,995-1005.
  • 6Elad M,Figueiredo M,Ma Y. On the role of sparse and re- dundant representations in image processing[A]. Proc. of the EEE[C]. 2010,972-982.
  • 7Engan K,Aase S O,Husoy J H. Multi-frame compression: Theory and design[J]. Signal Process, 2000,80 (10) : 2121-2140.
  • 8Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse repr'esen- tation[J]. IEEE Transactions On Signal Processing,2006, 54(11) :4311-4322.
  • 9Engan K, Skretting K, Husoy O H, Family of iterative LS- based dictionary learning algorithms, ILS-DLA, for sparse signal representation[J]. Digital Signal Processing, 2007, 17(1) :32-49.
  • 10Marial J, Bach F, Ponce J, et al. Online learning for matrix factorization and sparse code [J]. Journal of Machine Learning Research, 2010,11 (3) : 19-60.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部