期刊文献+

带跳的倒向重随机系统的最大值原理及其应用

Maximum principles for backward doubly stochastic systems with jumps and applications
原文传递
导出
摘要 本文研究带跳的倒向重随机系统的随机控制问题的最优性条件.在控制域为凸且控制变量进入所有系数条件下,分别以局部形式和全局形式给出必要性最优条件和充分性最优条件.把上述最大值原理应用于重随机线性二次最优控制问题,得到唯一的最优控制,并且给出应用的例子. We investigate the optimality conditions for stochastic control problems of backward doubly stochastic systems with jumps. Necessary and sufcient optimality conditions, where the control domains are convex and the control is allowed to enter into all the coefcients, are proved. The results are stated in the local form of stochastic maximum principle, as well as in the global form. Applying the stochastic maximum principles to doubly stochastic linear quadratic control problems, we obtain the unique optimal control. An example is given to illustrate the theoretical results.
出处 《中国科学:数学》 CSCD 北大核心 2013年第12期1237-1257,共21页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11371226,11071145,11301298,11201268和11231005) 国家自然科学基金委创新研究群体基金(批准号:11221061) 高等学校学科创新引智计划(111计划)(批准号:B12023) 山东省自然科学基金(批准号:ZR2012AQ013) 教育部人文社会科学研究规划基金(批准号:12YJAZH054)资助项目
关键词 最大值原理 最优控制 倒向 Ito积分 线性二次问题 POISSON过程 maximum principle optimal control backward Itö’s integral linear quadratic problem Poisson process
  • 相关文献

参考文献9

二级参考文献37

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部