期刊文献+

Thermal simulation and analysis of flat surface flip-chip high power light-emitting diodes 被引量:2

Thermal simulation and analysis of flat surface flip-chip high power light-emitting diodes
原文传递
导出
摘要 Conventional GaN-based flip-chip light-emitting diodes (CFC-LEDs) use Au bumps to contact the LED chip and Si submount, however the contact area is constrained by the number of Au bumps, limiting the heat dissipation performance. This paper presents a flat surface high power GaN-based flip-chip light emitting diode (SFC-LED), which can greatly improve the heat dissipation performance of the device. In order to understand the thermal performance of the SFC-LED thoroughly, a 3-D finite element model (FEM) is developed, and ANSYS is used to simulate the thermal performance. The temperature distributions of the SFC-LED and the CFC-LED are shown in this article, and the junction temperature simulation values of the SFC-LED and the CFC-LED are 112.80 ℃ and 122.97℃C, respectively. Simulation results prove that the junction temperature of the new structure is 10.17 ℃ lower than that of the conventional structure. Even if the CFC-LED has 24 Au bumps, the thermal resistance of the new structure is still far less than that of the conventional structure. The SFC-LED has a better thermal property. Conventional GaN-based flip-chip light-emitting diodes (CFC-LEDs) use Au bumps to contact the LED chip and Si submount, however the contact area is constrained by the number of Au bumps, limiting the heat dissipation performance. This paper presents a flat surface high power GaN-based flip-chip light emitting diode (SFC-LED), which can greatly improve the heat dissipation performance of the device. In order to understand the thermal performance of the SFC-LED thoroughly, a 3-D finite element model (FEM) is developed, and ANSYS is used to simulate the thermal performance. The temperature distributions of the SFC-LED and the CFC-LED are shown in this article, and the junction temperature simulation values of the SFC-LED and the CFC-LED are 112.80 ℃ and 122.97℃C, respectively. Simulation results prove that the junction temperature of the new structure is 10.17 ℃ lower than that of the conventional structure. Even if the CFC-LED has 24 Au bumps, the thermal resistance of the new structure is still far less than that of the conventional structure. The SFC-LED has a better thermal property.
出处 《Journal of Semiconductors》 EI CAS CSCD 2013年第12期49-52,共4页 半导体学报(英文版)
关键词 light-emitting diode FLIP-CHIP finite-element model junction temperature light-emitting diode flip-chip finite-element model junction temperature
  • 相关文献

参考文献1

二级参考文献10

共引文献13

同被引文献22

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部