期刊文献+

一种层级化的人眼检测方法 被引量:3

Hierarchical method of eye detection
下载PDF
导出
摘要 为了提高人眼检测算法的鲁棒性和实时性,提出了一种层级化的人眼检测方法。首先,该方法通过融合人脸检测器和肤色模型在图像大范围内进行快速人脸检测。然后,根据人脸面部拓扑结构几何关系的先验知识粗定位人眼得到人眼的粗定位区域。最后通过融合人眼检测器和人眼模板在人眼粗定位区域实现人眼的精确定位。大规模比较实验表明所提出方法能够准确定位人眼,并能够适用于人脸大小和旋转的变化,具有更强的鲁棒性。 This paper proposes a hierarchical method of human eye detection to improve robustness and speed.First,the method detects the face in current frame by fusing the decision of both the face detector and the skin model.Based on the prior knowledge of topological structure of human face,human eyes can be roughly localized.Finally,human eyes can be localized in a finer level by merging the decision of both eye detector and eye template.Extensive experimental results on several public face datasets.The experiment demonstrates that the proposed method can accurately localize human eves and has high robustness during the scale changing or the rotational variations.
出处 《电子测量技术》 2013年第11期39-42,共4页 Electronic Measurement Technology
基金 国家自然科学基金(61100124 61202168 61170239) 天津市应用基础与前沿技术研究计划项目(10JCYBJC25500) 2010和2011天津大学自主创新基金项目
关键词 人眼检测 人脸检测 几何特征 HAAR特征 ADABOOST算法 eye detection face detection geometric characteristics Haar feature adaboost
  • 相关文献

参考文献12

  • 1YUILLE A L,COHEN D S,HALLINAN P W.Feature extraction from faces using deformable template[J].International Journal of Computer Vision,1992,8(2):99-111.
  • 2ZHOU ZH H,GENG X.Projection functions for eye detection[J].Pattern Recognition,2004,37 (1):1049-1056.
  • 3VIOLA P,JONES M.Robust real-time face detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 4陈雅茜,王玲.基于肤色和几何特性的人脸特征区域定位方法[J].计算机工程,2006,32(3):212-213. 被引量:11
  • 5FREUND Y,SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[C].Journal of Computer and System Sciences,1995:23-27.
  • 6师黎,吴敏,张娟.基于小训练样本的AdaBoost人脸检测[J].计算机工程,2011,37(8):199-201. 被引量:3
  • 7梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:355
  • 8吴从中,贺伟,汤润森,刘扬.光照自适应的疲劳驾驶检测系统[J].电子测量与仪器学报,2012,26(1):60-66. 被引量:15
  • 9LIENHART R,MAYDT J.An extended set of haar-like features for rapid object detection[C].Proceedings 2002International Conference on Image Processing,2002:I-900-I-903.
  • 10LEE K C,HO J,YANG M H,et al.Visual tracking and recognition using probabilistic appearance manifolds[J].Computer Vision and Image Understanding 2005,99(3):303-331.

二级参考文献98

  • 1Chang H,Robles U.Face Detection[Z].http://www-cs-students.Stanford.edu/~robles/ee368/main.html.2000-05.
  • 2Wyszecki G,Styles W S.Color Science:Concepts and Methods,Quantitative Data and Formulae(Second Edition)[M].John Wiley & Sons,New York,1982.
  • 3Gong Y,Sakauchi M.Detection of Regions Matching Specified Chromatic Features[J].Computer Vision and Image Understanding,1995,61(2):263-269.
  • 4Freund Y. Boosting a Weak I,carning Algorithm by Majority[J]. Information and Computation, 1995, 121 (2): 256-285.
  • 5Li S Z, Zhang Zhenqiu. Statistical Learning of Multi-view Face Detection[C]//Proc. of the 7th European Conference on Computer Vision. Copenhagen, Denmark: [s. n.], 2002: 67-81.
  • 6Wu Jianxin, Rehg J M, Mullin M D. Learning a Rare Event Detection Cascade by Direct Feature Selection[C]//Proc. of Annual Conference on Neural Information Processing Systems. Columbia, USA: [s. n.], 2004: 1523-1530.
  • 7Wu Jianxin, Brubaker S C, Mullin M D, ctal. Fast Asymmetric Learning for Cascade Face Delection[J]. IEEE Trans. on Pattern Anal. Mach. Intell., 2007, 20(3): 369-382.
  • 8B. ROMAN, et al. Fatigue Indicators of Drowsy Drivers Based on Analysis of Physiological Signals[C]. ISMDA 2001, LNCS 2199, 2001: 62-68.
  • 9AGREN E. Lateral position detection using a vehicle- mounted camera[D]. Master Thesis of Linkopings Universitet, 2003.
  • 10GU H S, JI Q, ZHU ZH W. Active facial tracking for fatigue detection[C]. Proceedings of Sixth IEEE Workshop on Applications of Computer Vision 2002, WACV 2002, Orlando, 2002: 137-142.

共引文献385

同被引文献28

  • 1BERGASA L M, NUEVO J, SOTELO M A, et al. Real- time system for monitoring driver vigilance [ J ]. IEEE Transactions on Intelligent Transportation Systems. 2006, 7 ( 1 ) :63-77.
  • 2HANSEN D W, QIANG J. In the eye of the beholder: A survey of models for eyes and gaze [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2010, 32 (3):478-500.
  • 3COOTES T F, TAYLOR C J, COOPER D H, et al. Ac- tive shape models-Their training and application [ J ]. Computer Vision and Image Understanding. 1995, 61 ( 1 ) :38-59.
  • 4COOTES T F, EDWARDS G J, TAYLOR C J. Active appearance models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 ( 6 ) : 681-685.
  • 5VIOLA P, JONES M J. Robust real-time face detection[J] International Journal of Computer Vision, 2004, 57 (2) 137-154.
  • 6VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[J]. Processing of Conference on Computer Vision and pattern Recogni tion, 2001 ..511-518.
  • 7李志春,何仁,何翠群.模糊神经网络在驾驶员疲劳检测中的应用[J].江苏大学学报(自然科学版),2008,29(2):123-126. 被引量:7
  • 8王丽婷,丁晓青,方驰.一种鲁棒的全自动人脸特征点定位方法[J].自动化学报,2009,35(1):9-16. 被引量:20
  • 9徐翠,李然.基于YCbCr空间的高斯肤色模型的人脸检测[J].软件导刊,2009,8(2):179-181. 被引量:7
  • 10陈勇,黄琦,刘霞,张昌华.一种全天候驾驶员疲劳检测方法研究[J].仪器仪表学报,2009,30(3):636-640. 被引量:25

引证文献3

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部