摘要
本文基于小波变换在近红外(NIR)定量模型中的作用:降噪、消除背景干扰,数据压缩和变量筛选,结合化学计量学在近红外建模中的应用,综述了近10年来小波变换在近红外定量模型中的应用概况。随着近红外分析技术的不断发展和完善,小波变换将会发挥它的优势,为NIR定量模型建立与应用提供支撑。
This article is based on the effects of wavelet transform in the near infrared(NIR) quantitative model :denoising, eliminating background interference, data compression and variable selection, with chemometrics being applied in the near infrared model, it re-viewed, in the past 10 years, the wavelet transform in near infrared quantitative model for applications. With NIR technology continuing to evolve and improve, the wavelet transform will take its advantages to support modeling and applications.
出处
《世界中医药》
CAS
2013年第11期1273-1276,1279,共5页
World Chinese Medicine
基金
国家自然科学基金项目(编号:81303218)
2013省部级中药基础与新药研究重点实验室开放课题资助
关键词
小波变换
近红外光谱(NIR)
化学计量学
变量筛选
降噪
Wavelet transform
Near infrared Spectroscopy(NIR)
Chemometrics
Variable selection
Denoising